Gene network homology in prokaryotes using a similarity search approach: queries of quorum sensing signal transduction.

PLoS Comput Biol

Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland, United States of America.

Published: December 2012

Bacterial cell-cell communication is mediated by small signaling molecules known as autoinducers. Importantly, autoinducer-2 (AI-2) is synthesized via the enzyme LuxS in over 80 species, some of which mediate their pathogenicity by recognizing and transducing this signal in a cell density dependent manner. AI-2 mediated phenotypes are not well understood however, as the means for signal transduction appears varied among species, while AI-2 synthesis processes appear conserved. Approaches to reveal the recognition pathways of AI-2 will shed light on pathogenicity as we believe recognition of the signal is likely as important, if not more, than the signal synthesis. LMNAST (Local Modular Network Alignment Similarity Tool) uses a local similarity search heuristic to study gene order, generating homology hits for the genomic arrangement of a query gene sequence. We develop and apply this tool for the E. coli lac and LuxS regulated (Lsr) systems. Lsr is of great interest as it mediates AI-2 uptake and processing. Both test searches generated results that were subsequently analyzed through a number of different lenses, each with its own level of granularity, from a binary phylogenetic representation down to trackback plots that preserve genomic organizational information. Through a survey of these results, we demonstrate the identification of orthologs, paralogs, hitchhiking genes, gene loss, gene rearrangement within an operon context, and also horizontal gene transfer (HGT). We found a variety of operon structures that are consistent with our hypothesis that the signal can be perceived and transduced by homologous protein complexes, while their regulation may be key to defining subsequent phenotypic behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3420918PMC
http://dx.doi.org/10.1371/journal.pcbi.1002637DOI Listing

Publication Analysis

Top Keywords

similarity search
8
signal transduction
8
gene
6
signal
6
ai-2
5
gene network
4
network homology
4
homology prokaryotes
4
prokaryotes similarity
4
search approach
4

Similar Publications

Genetic landscape in undiagnosed patients with syndromic hearing loss revealed by whole exome sequencing and phenotype similarity search.

Hum Genet

January 2025

Division of Hearing and Balance Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan.

There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features.

View Article and Find Full Text PDF

Objectives: This study sought to assess the effectiveness of nurse-led care (NLC) in patients with rheumatoid arthritis (RA).

Methods: We conducted a comprehensive search of the Cochrane Library, Web of Science, PubMed, Embase, CINAHL, ClinicalTrials.gov databases and the references from relevant literature published prior to May 2023.

View Article and Find Full Text PDF

Morphological characterization of retinal development from birth to adulthood via retinal thickness assessment in mice: a systematic review.

Exp Eye Res

January 2025

Institute of Biomedical Engineering, University of Montréal, Montréal, Canada; Research Center, CHU Sainte-Justine University Hospital Centre, Montréal, Canada; Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montréal, Montréal, Canada. Electronic address:

The morphology and thickness of the retinal layers are valuable biomarkers for retinal health and development. The retinal layers in mice are similar to those in humans; thus, a mouse is appropriate for studying the retina. The objectives of this systematic review were: (1) to describe normal retinal morphology quantitatively using retinal layer thickness measured from birth to age 6 months in healthy mice; and (2) to describe morphological changes in physiological retinal development over time using the longitudinal (in vivo) and cross-sectional (ex vivo) data from the included studies.

View Article and Find Full Text PDF

The Jalap Roots: A Herbal Legacy from the Neotropics to the World.

J Ethnopharmacol

January 2025

Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico. Electronic address:

Etnopharmacological Relevance: The Convolvulaceae or morning glory family, with about 2000 species in the world's Tropics and subtropics, stands out among the plants used in traditional medicine. Medicinal plant complexes with important purgative properties have been developed in Mexico and Brazil from members of the genera Ipomoea and Operculina with storage roots. Popularly known as the jalap roots, their resin glycosides cause purgative and laxative activities that facilitate bowel movements.

View Article and Find Full Text PDF

Purpose: To identify sex-based differences in pathology, outcomes, and complications after hip arthroscopy for femoroacetabular impingement (FAI), and to compare patient-reported outcomes (PRO) scores between males and females.

Methods: The PubMed and MEDLINE databases were searched in September 2024, according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Included studies had data stratified by sex, minimum 2-year patient reported outcome (PRO) scores for hip arthroscopy in the setting of FAI and labral pathology, and a 2014 or later publication date.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!