Severe acute respiratory syndrome coronavirus (SARS-CoV) is the etiological agent of SARS, a fatal pulmonary disorder with no effective treatment. We found that SARS-CoV spike glycoprotein (S protein), a key molecule for viral entry, binds to calnexin, a molecular chaperone in the endoplasmic reticulum (ER), but not to calreticulin, a homolog of calnexin. Calnexin bound to most truncated mutants of S protein, and S protein bound to all mutants of calnexin. Pseudotyped virus carrying S protein (S-pseudovirus) produced by human cells that were treated with small interfering RNA (siRNA) for calnexin expression (calnexin siRNA-treated cells) showed significantly lower infectivity than S-pseudoviruses produced by untreated and control siRNA-treated cells. S-pseudovirus produced by calnexin siRNA-treated cells contained S protein modified with N-glycan side chains differently from other two S proteins and consisted of two kinds of viral particles: those of normal density with little S protein and those of high density with abundant S protein. Treatment with peptide-N-glycosidase F (PNGase F), which removes all types of N-glycan side chains from glycoproteins, eliminated the infectivity of S-pseudovirus. S-pseudovirus and SARS-CoV produced in the presence of α-glucosidase inhibitors, which disrupt the interaction between calnexin and its substrates, showed significantly lower infectivity than each virus produced in the absence of those compounds. In S-pseudovirus, the incorporation of S protein into viral particles was obviously inhibited. In SARS-CoV, viral production was obviously inhibited. These findings demonstrated that calnexin strictly monitors the maturation of S protein by its direct binding, resulting in conferring infectivity on SARS-CoV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486308 | PMC |
http://dx.doi.org/10.1128/JVI.01250-12 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!