A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cyclic stretch-induced thrombin generation by rat vascular smooth muscle cells is mediated by the integrin αvβ3 pathway. | LitMetric

AI Article Synopsis

  • Vascular smooth muscle cell (VSMC) activity is crucial in atherothrombotic diseases, and the study investigates how mechanical stretch affects thrombin generation in these cells.
  • Mechanical stretch at higher levels (10% cyclic stretch) increases thrombin generation and integrin α(v)β(3) expression, while static stretch does not have this effect.
  • The findings indicate that this increase is linked to integrin signaling pathways and suggests that thrombin generated by cyclic stretch might play a role in the remodeling of blood vessels.

Article Abstract

Aims: Vascular smooth muscle cell (VSMC) phenotypic modulation plays a pivotal role in atherothrombotic diseases. Thrombin generation at the surface of VSMCs and activation of integrin mechanotransduction pathways represent potential mechanisms. Here, we examine whether mechanical stretch increases thrombin generation on cultured rat aortic VSMCs.

Methods And Results: The integrin α(v)β(3) antagonist peptide (cRGDPV) dose-dependently decreased thrombin generation without stretch. Static stretch (5%, 1 Hz) failed to modify the thrombin-forming capacity of VSMCs, whereas 10% cyclic stretch during 60 and 360 min enhanced integrin α(v)β(3) expression and thrombin generation at the surface of VSMCs by 30% without inducing apoptosis. Cyclic stretch also stimulated Src phosphorylation, cleavage of talin, and binding of prothrombin to VSMCs. Upregulation of α(v)β(3) expression, Src phosphorylation, and enhanced thrombin generation by cyclic stretch were abolished by cRGDPV and silencing RNA (siRNA) against α(v) as well as by selective inhibition of integrin α(v)β(3) inside-out signalling by a talin-siRNA. Complete abolition of stretch-induced VSMC-supported thrombin generation by the RGT peptide, which disrupts the interaction of Src with the β(3) cytoplasmic tail, demonstrates the link between outside-in pathways involving β(3)-Src interaction and thrombin activity dependent on inside-out signalling.

Conclusion: These data show that the contribution of cyclic stretch to VSMC-supported thrombin generation is driven by the integrin α(v)β(3) signalling pathway and suggest a role for pulsatility-induced intramural thrombin in VSMC-dependent vascular remodelling.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvs274DOI Listing

Publication Analysis

Top Keywords

thrombin generation
32
integrin αvβ3
20
cyclic stretch
16
thrombin
10
generation
8
vascular smooth
8
smooth muscle
8
generation surface
8
surface vsmcs
8
αvβ3 expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!