Similarity-driven discovery of zeolite materials for adsorption-based separations.

Chemphyschem

Computational Research Division, Lawrence Berkeley National Laboratory, CA 94720, USA.

Published: November 2012

Crystalline porous materials can be exploited in many applications. Discovery of materials with optimum adsorption properties typically involves expensive brute-force characterization of large sets of materials. An alternative approach based on similarity searching that enables discovery of materials with optimum adsorption for CO(2) and other molecules at a fraction of the cost of brute-force characterization is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201200554DOI Listing

Publication Analysis

Top Keywords

discovery materials
8
materials optimum
8
optimum adsorption
8
brute-force characterization
8
materials
5
similarity-driven discovery
4
discovery zeolite
4
zeolite materials
4
materials adsorption-based
4
adsorption-based separations
4

Similar Publications

Chronic insomnia is one of the most common health problems among veterans and can significantly impact health, function, and quality of life. Brief behavioral treatment for insomnia (BBTI), an adaptation of cognitive behavioral therapy for insomnia (CBT-I), was developed to help increase access to care outside of specialty settings. However, training providers alone is rarely sufficient, and implementation strategies are needed for successful uptake, adoption, and sustainable delivery of care.

View Article and Find Full Text PDF

The development of new protocols for stereospecific and stereoselective halogenation transformations by mild reaction conditions is a highly desirable research target for the chemical and pharmaceutical industries. Following the straightforward methodology for directly transforming a wide scope of alcohols to alkyl bromides and chlorides using substoichiometric amounts of thioureas and N-halo succinimides (NXS) as a halogen source in a single step, we noticed that in apolar solvents bromination of chiral secondary alcohols did not produce the expected racemates. In this study, the stereochemical aspects of the bromination reaction were examined.

View Article and Find Full Text PDF

A cell-free gene expression system for prototyping and gene expression analysis.

Appl Environ Microbiol

December 2024

Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.

is an obligate anaerobic, Gram-positive bacterium that produces toxins. Despite technological progress, conducting gene expression analysis of under different conditions continues to be labor-intensive. Therefore, there is a demand for simplified tools to investigate the transcriptional and translational regulation of .

View Article and Find Full Text PDF

The Importance and Discovery of Highly Connected Covalent Organic Framework Net Topologies.

J Am Chem Soc

January 2025

Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

Furthering the field of synthetic organic chemistry from the discrete molecules regime to the extended structure regime, covalent organic frameworks (COFs) represent a new genre of crystalline porous materials featuring designability with molecular-level precision, well-defined porosity, and exceptional stability imparted by the robust covalent linkages reticulating organic molecules. The topology of COFs is a principal feature that regulates their functionality and usability for emerging technologies. Profound comprehension of network topologies and maneuvering them toward targeted applications are crucial to advancing the realm of COF research and developing novel functional materials for exciting breakthroughs.

View Article and Find Full Text PDF

Exploring host-guest interactions to regulate hydrogen-bonding assembly offers a promising approach for developing advanced porous crystal materials (PCMs). However, screening compatible guests with appropriate geometries and host-guest interactions that could inhibit the dense packing of building blocks remains a primary challenge. This study presents a novel guest-induced crystallization (GIC) strategy, guided by thermodynamic calculations, to develop porous hydrogen-bonded organic frameworks (HOFs) using structurally challenging tetrazole building units.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!