Purpose: To identify genetic changes that could drive cancer pathogenesis in never and ever smokers with lung adenocarcinoma.

Experimental Design: We analyzed the copy number and gene expression profiles of lung adenocarcinomas in 165 patients and related the alterations to smoking status. Having found differences in the tumor profiles, we integrated copy number and gene expression data from 80 paired samples.

Results: Amplifications at 8q24.12 overlapping MYC and ATAD2 were more frequent in ever smokers. Unsupervised analysis of gene expression revealed two groups: in the group with mainly never smokers, the tumors expressed genes common to normal lung; in the group with more ever smokers, the tumors expressed "proliferative" and "invasive" gene clusters. Integration of copy number and gene expression data identified one module enriched in mitotic genes and MYC targets. Its main associated modulator was ATAD2, a cofactor of MYC. A strong dose-response relationship between ATAD2 and proliferation-related gene expression was noted in both never and ever smokers, which was verified in two independent cohorts. Both ATAD2 and MYC expression correlated with 8q24.12 amplification and were higher in ever smokers. However, only ATAD2, and not MYC, overexpression explained the behavior of proliferation-related genes and predicted a worse prognosis independently of disease stage in a large validation cohort.

Conclusions: The likely driving force behind MYC contribution to uncontrolled cell proliferation in lung adenocarcinoma is ATAD2. Deregulation of ATAD2 is mainly related to gene amplification and is more frequent in ever smokers.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-12-0505DOI Listing

Publication Analysis

Top Keywords

gene expression
20
copy number
12
number gene
12
cell proliferation
8
proliferation lung
8
lung adenocarcinoma
8
expression data
8
frequent smokers
8
group smokers
8
smokers tumors
8

Similar Publications

Comprehensive genomic and transcriptomic analyses of the anaerobic degradation of microcystin in Alcaligenes faecalis D04.

Ecotoxicol Environ Saf

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China. Electronic address:

Microcystin LR (MC-LR) pollution is a serious threat to aquatic ecosystems and public health in China and is an environmental problem that urgently needs to be solved. However, few studies have investigated the anaerobic degradation pathway and related molecular biological mechanisms of MC-LR. In this study, a bacterium capable of degrading MC-LR with a degradation efficiency of 0.

View Article and Find Full Text PDF

Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).

View Article and Find Full Text PDF

Perfluorohexane Sulfonic Acid Disrupts the Immune Microenvironment for Spermatogenesis by Damaging the Structure of the Blood-Testis Barrier in Mice.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.

Perfluorohexane sulfonic acid (PFHxS) is extensively used in waterproof coatings and fire-fighting foams, and several studies have found it to be a potential health hazard, but there is still unknown about its effects on spermatogenesis. Our results showed that PFHxS-treated mice have significant reproductive toxicity, including a decrease in sperm count and motility, and the levels of sex hormones (P < 0.05).

View Article and Find Full Text PDF

Nanosize Non-Viral Gene Therapy Reverses Senescence Reprograming Driven by PBRM1 Deficiency to Suppress iCCA Progression.

Adv Sci (Weinh)

January 2025

Department of Hepatic Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.

Polybromo-1 (PBRM1) serves as a crucial regulator of gene transcription in various tumors, including intrahepatic cholangiocarcinoma (iCCA). However, the exact role of PBRM1 in iCCA and the mechanism by which it regulates downstream target genes remain unclear. This research has revealed that PBRM1 is significantly downregulated in iCCA tissues, and this reduced expression is linked to aggressive clinicopathological features and a poor prognosis.

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!