Artificial tracheal grafts should have not only enough compressive strength to maintain an open tracheal lumen, but also sufficient flexibility for stable mechanical behavior, similar to the native trachea at the implant site. In this study, we developed a new 3D artificial tracheal graft using a bellows design for considering its mechanical behavior. To investigate the mechanical behavior of the bellows structure, finite element method (FEM) analysis in terms of longitudinal tension/compression, bending and radial compression was conducted. The bellows structure was then compared with the cylinder structure generally used for artificial tracheal grafts. The FEM analysis showed that the bellows had outstanding flexibility in longitudinal tension/compression and bending. Moreover, the bellows kept the lumen open without severe luminal deformation in comparison with the cylinder structure. A three-dimensional artificial tracheal graft with a bellows design was fabricated using indirect solid freeform fabrication technology, and the actual mechanical test was conducted to investigate the actual mechanical behavior of the bellows graft. The fabricated bellows graft was then applied to segmental tracheal reconstruction in a rabbit model to assess its applicability. The bellows graft was completely incorporated into newly regenerated connective tissue and no obstruction at the implanted site was observed for up to 8 weeks after implantation. The data suggested that the developed bellows tracheal graft could be a promising alternative for tracheal reconstruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1758-5082/4/3/035004 | DOI Listing |
Chaos
January 2025
State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
The aircraft can experience complex environments during the flight. For the random actions, the traditional Gaussian white noise assumption may not be sufficient to depict the realistic stochastic loads on the wing structures. Considering fluctuations with extreme conditions, Lévy noise is a better candidate describing the stochastic dynamical behaviors on the airfoil models.
View Article and Find Full Text PDFAnn Biomed Eng
January 2025
Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK.
Purpose: Head acceleration events (HAEs) are a growing concern in contact sports, prompting two rugby governing bodies to mandate instrumented mouthguards (iMGs). This has resulted in an influx of data imposing financial and time constraints. This study presents two computational methods that leverage a dataset of video-coded match events: cross-correlation synchronisation aligns iMG data to a video recording, by providing playback timestamps for each HAE, enabling analysts to locate them in video footage; and post-synchronisation event matching identifies the coded match event (e.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
The capillary break-up of complex fluid filaments occurs in many scientific and industrial applications, particularly in bio-printing where both liquid and polymerized droplets exist in the fluid. The simultaneous presence of fluid and solid particles within a carrier fluid and their interactions lead to deviations in the filament break-up from the well-established capillary breakup dynamics of single-phase liquids. To examine the significance of the dispersed phase and the internal interactions between liquid droplets and solid particles, we prepare emulsions through photopolymerization and conduct experimental investigations into the pinch-off dynamics of fluid filaments, focusing on the impact of varying concentrations of liquid droplets (before polymerization) and polymerized droplets.
View Article and Find Full Text PDFNanoscale
January 2025
Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China.
Based on the molecular dynamics (AIMD), the temperature and velocity statistics of diatomic semiconductors were proposed to be classified by atomic species. The phase differences resulting from lattice vibrations of different atoms indicated the presence of anharmonicity at finite atomic temperatures. To further explore the electronic properties, the effect of temperature on electrostatic potential field vibrations in semiconductors was studied, and the concept of electrostatic potential oscillation (EPO) at finite atomic temperature was introduced.
View Article and Find Full Text PDFSwiss Med Wkly
January 2025
Department of Cardiology and Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.
Background: Coronary artery ectasias and aneurysms (CAE/CAAs) are among the less common forms of coronary artery disease, with undefined long-term outcomes and treatment strategies.
Aims: To assess the clinical characteristics, angiographic patterns, and long-term outcomes in patients with CAE, CAA, or both.
Methods: This 15-year (2006-2021) retrospective single-centre registry included 281 patients diagnosed with CAE/CAA via invasive coronary angiography.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!