Marine toxins appear to be increasing in many areas of the world. An emerging problem in the Mediterranean Sea is represented by palytoxin (PlTX), one of the most potent marine toxins, frequently detected in seafood. Due to the high potential for human toxicity of PlTX, there is a strong and urgent need for sensitive methods toward its detection and quantification. We have developed an ultrasensitive electrochemiluminescence-based sensor for the detection of PlTX, taking advantage of the specificity provided by anti-PlTX antibodies, the good conductive properties of carbon nanotubes, and the excellent sensitivity achieved by a luminescence-based transducer. The sensor was able to produce a concentration-dependent light signal, allowing PlTX quantification in mussels, with a limit of quantification (LOQ = 2.2 μg/kg of mussel meat) more than 2 orders of magnitude more sensitive than that of the commonly used detection techniques, such as LC-MS/MS.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn302573cDOI Listing

Publication Analysis

Top Keywords

marine toxins
8
highly sensitive
4
sensitive electrochemiluminescent
4
electrochemiluminescent nanobiosensor
4
detection
4
nanobiosensor detection
4
detection palytoxin
4
palytoxin marine
4
toxins appear
4
appear increasing
4

Similar Publications

Proteomic Analysis Is Needed to Understand the Vulnerability of Sea Anemones to Climate Change.

J Proteome Res

January 2025

Department of Hydrobiology, Division of Biological and Health Sciences, Ecotoxicology Laboratory, Universidad Autónoma Metropolitana, Iztapalapa Unit, Mexico City C. P. 09340, Mexico.

Sea anemones play a crucial role in marine ecosystems. Recent studies have highlighted their physiological and ecological responses to thermal stress. Therefore, our objective was to perform a proteomic analysis of sea anemones in the Gulf of Mexico, subjected to thermal stress, to understand whether these organisms activate specific processes to resist increased temperature.

View Article and Find Full Text PDF

Biofouling dynamics and antifouling innovations: Transitioning from traditional biocides to nanotechnological interventions.

Environ Res

January 2025

Marine Elements and Marine Environment Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Biofouling is a common phenomenon caused by waterborne organisms such as bacteria, diatoms, mussels, barnacles, algae, etc., accumulating on the surfaces of engineering structures submerged under water. This leads to corrosion of such surfaces and decreases their moving efficiency.

View Article and Find Full Text PDF

Nanozymes, a kind of nanoparticles with enzyme-mimicking activities, have attracted considerable attention due to their robust catalytic properties, ease of preparation, and resistance to harsh conditions. By combining nanozymes with surface-enhanced Raman spectroscopy (SERS) technology, highly sensitive and selective sensors have been developed. These sensors are capable of detecting a wide range of analytes, such as foodborne toxins, environmental pollutants, and biomedical markers.

View Article and Find Full Text PDF

The multiple-tentacle box jellyfish, (Sucharitakul, 2017) and (Horst, 1907), are venomous species found in Thai waters. They are responsible for numerous envenomations through their stinging organelles, nematocysts. These specialized microscopic structures discharge venom, yet detailed knowledge of their types and morphology in these species remains limited.

View Article and Find Full Text PDF

Risk Assessment of Harmful Algal Blooms in Salmon Farming: Scotland as a Case Study.

Toxins (Basel)

January 2025

Scottish Association for Marine Science-UHI, Oban PA37 1QA, UK.

This study explored harmful algal bloom (HAB) risk as a function of exposure, hazard and vulnerability, using Scotland as a case study. Exposure was defined as the fish biomass estimated to be lost from a bloom event, based on the total recorded annual production. Hazard was estimated from literature-reported bloom events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!