The present study examined to what extent professional boxing compromises cerebral haemodynamic function and its association with CTBI (chronic traumatic brain injury). A total of 12 male professional boxers were compared with 12 age-, gender- and physical fitness-matched non-boxing controls. We assessed dCA (dynamic cerebral autoregulation; thigh-cuff technique and transfer function analysis), CVRCO₂ (cerebrovascular reactivity to changes in CO₂: 5% CO₂ and controlled hyperventilation), orthostatic tolerance (supine to standing) and neurocognitive function (psychometric tests). Blood flow velocity in the middle cerebral artery (transcranial Doppler ultrasound), mean arterial blood pressure (finger photoplethysmography), end-tidal CO₂ (capnography) and cortical oxyhaemoglobin concentration (near-IR spectroscopy) were continuously measured. Boxers were characterized by fronto-temporal neurocognitive dysfunction and impaired dCA as indicated by a lower rate of regulation and autoregulatory index (P<0.05 compared with controls). Likewise, CVRCO₂ was also reduced resulting in a lower CVRCO₂ range (P<0.05 compared with controls). The latter was most marked in boxers with the highest CTBI scores and correlated against the volume and intensity of sparring during training (r=-0.84, P<0.05). These impairments coincided with more marked orthostatic hypotension, cerebral hypoperfusion and corresponding cortical de-oxygenation during orthostatic stress (P<0.05 compared with controls). In conclusion, these findings provide the first comprehensive evidence for chronically impaired cerebral haemodynamic function in active boxers due to the mechanical trauma incurred by repetitive, sub-concussive head impact incurred during sparring training. This may help explain why CTBI is a progressive disease that manifests beyond the active boxing career.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/CS20120259 | DOI Listing |
Commun Biol
January 2025
School of Psychology and Sussex Neuroscience, University of Sussex, Brighton, UK.
Reduced cerebral blood flow occurs early in the development of Alzheimer's disease (AD), but the factors producing this reduction are unknown. Here, we ask whether genetic and lifestyle risk factors for AD-the ε4 allele of the Apolipoprotein (APOE) gene, and physical activity-can together produce this reduction in cerebral blood flow which leads eventually to AD. Using in vivo two-photon microscopy and haemodynamic measures, we record neurovascular function from the visual cortex of physically active or sedentary mice expressing APOE3 and APOE4 in place of murine APOE.
View Article and Find Full Text PDFBr J Anaesth
February 2025
Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy.
Machine learning (ML) algorithms hold significant potential for extracting valuable clinical information from big data, surpassing the processing capabilities of the human brain. However, it would be naïve to believe that ML algorithms can consistently transform data into actionable insights. Clinical studies suggest that in some instances, they tell clinicians what they already know or can plainly see.
View Article and Find Full Text PDFClin Sci (Lond)
January 2025
Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.
View Article and Find Full Text PDFPhysiol Rep
February 2025
Department of Biomedical Engineering, Toyo University, Saitama, Japan.
The present study aims to examine the effect of 4 h of continuous sitting on cerebral endothelial function, which is a crucial component of cerebral blood flow regulation. We hypothesized that 4 h of sitting may impair cerebral endothelial function similarly to how it affects lower limb vasculature. Thirteen young, healthy participants were instructed to remain seated for 4 h without moving their lower limbs.
View Article and Find Full Text PDFJ Med Life
December 2024
Department of Anesthesiology and Intensive Care, Faculty of Medicine Universitas Padjadjaran Bandung, Indonesia.
Enhanced Recovery After Surgery (ERAS) is a recovery method developed to minimize pain and improve post-operative healing in patients. Brain tumor resection using the ERAS concept is relatively new. This case series evaluates the implementation of the ERAS protocol in three female patients diagnosed with supratentorial brain tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!