Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oyster Crassostrea hongkongensis, a widely cultivated oyster species in Southern China, can accumulate metals (especially for Cu and Zn) to extraordinarily high concentrations (up to 3% of body dry weight). It remains unknown how they were acclimated to contaminated environment and built up such high metal concentrations in their bodies. A seven month transplantation experiment was conducted to rebuild the physiological process of acclimation in oysters to illustrate how they cope with increasing metal bioavailability. The metal concentrations increased substantially in the transplanted oysters from a reference site to a contaminated site. Our results showed that metal biokinetics in the oysters changed dramatically after suffering from metal stress. The clearance rate, dissolved uptake rate (for Cd and Zn), and metal assimilation efficiency (for Zn) was depressed, while the metal efflux rate (for Zn) was enhanced in the contaminated oysters. Beside the change of metal homeostasis, the oysters were able to sequester metals into subcellular nontoxic forms and maintain a low portion of metals distributing in the metal-sensitive fraction. This comparative bioaccumulation study of C. hongkongensis suggested that adjustment of metal biokinetics played an important role in the survival of oysters in metal contaminated environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es302040g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!