Interaction of OKL38 and p53 in regulating mitochondrial structure and function.

PLoS One

Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, Pennsylvania, United States of America.

Published: March 2013

The tumor suppressor p53 is a well-known transcription factor controlling the expression of its target genes involved in cell cycle and apoptosis. In addition, p53 also plays a direct proapoptotic role in mitochondria by regulating cytochrome c release. Recently, we identified a novel downstream target of p53, OKL38, which relocalizes from nucleus to mitochondria upon forced expression to induce apoptosis. However, the mechanism underlying OKL38 targeting to mitochondria and apoptosis induction remains unclear. Here, we found that OKL38 interacts with p53 to regulate mitochondria function. After DNA damage, OKL38 colocalizes with p53 to mitochondria in U2OS cells. Further, p53 and OKL38 are targeted to mitochondria in synergy: forced expression of OKL38 leads to p53 localization to mitochondria while the expression of a mitochondria enriched p53 polymorphic variant, p53(R72), leads to OKL38 enrichment in mitochondria. Biochemical analyses found that OKL38 and p53 interact in vivo and in vitro via multiple domains. In cell biological assays, multiple regions of OKL38 mediate its mitochondria localization and induce mitochondria morphology changes. OKL38 induces formation of megamitochondria and increases cellular levels of reactive oxygen species. Furthermore, OKL38 induces cytochrome c release upon incubation with mitochondria. Taken together, our studies suggest that OKL38 regulates mitochondria morphology and functions during apoptosis together with p53.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422280PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043362PLOS

Publication Analysis

Top Keywords

mitochondria
13
okl38
12
p53
11
okl38 p53
8
cytochrome release
8
p53 okl38
8
forced expression
8
mitochondria morphology
8
okl38 induces
8
interaction okl38
4

Similar Publications

Evidence accumulated mitochondria, as the "powerplants of the cell," express several functional receptors for external ligands that modify their function and regulate cell biology. This review sheds new light on the role of these organelles in sensing external stimuli to facilitate energy production for cellular needs. This is possible because mitochondria express some receptors on their membranes that are responsible for their autonomous responses.

View Article and Find Full Text PDF

From smog to scarred hearts: unmasking the detrimental impact of air pollution on myocardial ischemia-reperfusion injury.

Cell Mol Life Sci

January 2025

Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.

Air pollution is a global environmental health hazard associated with elevated cardiovascular morbidity and mortality. Emerging evidence suggests that exposure to various air pollutants, specifically particulate matter (PM), ultrafine particulate matter (UFPM), and diesel exhaust particles, may exacerbate myocardial ischemia-reperfusion (I/R) injury. PM exposure can directly impair cardiomyocyte survival under ischemic conditions by inducing inflammation, oxidative stress, apoptosis, and dysregulation of non-coding RNAs.

View Article and Find Full Text PDF

Little is known about plant-parasitic animal-derived pathogen-associated molecular pattern (PAMP)/ pattern-recognition receptor (PRR) pairs. Additionally, mitochondrial proteins have not previously been reported to be secreted into hosts by pathogens. Here, it is found that the Meloidogyne javanica elongation factor thermo unstable (EF-Tu) (MjEF-Tu) located in the nematode mitochondria is up-regulated and secreted into the host plant during nematode parasitism.

View Article and Find Full Text PDF

Agmatine suppresses glycolysis via the PI3K/Akt/mTOR/HIF-1α signaling pathway and improves mitochondrial function in microglia exposed to lipopolysaccharide.

Biofactors

January 2025

Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Modulating metabolic pathways in activated microglia can alter their phenotype, which is relevant in uncontrolled neuroinflammation as a component of various neurodegenerative diseases. Here, we investigated how pretreatment with agmatine, an endogenous polyamine, affects metabolic changes in an in vitro model of neuroinflammation, a murine microglial BV-2 cell line exposed to lipopolysaccharide (LPS). Hence, we analyzed gene expression using qPCR and protein levels using Western blot and ELISA.

View Article and Find Full Text PDF

A Triple-Responsive and Dual-NIR Emissive Fluorescence Probe for Precise Cancer Imaging and Therapy by Activating Pyroptosis Pathway.

Anal Chem

January 2025

Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, China.

Revealing changes in the tumor microenvironment is crucial for understanding cancer and developing sensitive methods for precise cancer imaging and diagnosis. Intracellular hydrogen peroxide (HO) and microenvironmental factors (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!