Detection of preanalytic laboratory testing errors using a statistically guided protocol.

Am J Clin Pathol

Department of Pathology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA.

Published: September 2012

Preanalytic laboratory testing errors are often difficult to identify. We demonstrate how laboratories can integrate statistical models with clinical judgment to develop protocols for preanalytic error detection. Specifically, we developed a protocol to identify spuriously elevated glucose values resulting from improper "line draws" or related phlebotomy errors. Using a decision tree-generating algorithm and an annotated set of training data, we generated decision trees to classify critically elevated glucose results as "real" or "spurious" based on available laboratory parameters. Decision trees revealed that a 30-day patient-specific average glucose concentration lower than 186.3 mg/dL (10.3 mmol/L), a current glucose concentration higher than 663 mg/dL (37 mmol/L), and an anion gap lower than 16.5 mEq/L (16.5 mmol/L) suggested a spurious result. We then used the results from the decision tree analysis to inform the implementation of a clinical protocol that significantly improved the laboratory's identification of spurious results. Similar approaches may be useful in developing protocols to identify other errors or to assist in clinical interpretation of results.

Download full-text PDF

Source
http://dx.doi.org/10.1309/AJCPQIRIB3CT1EJVDOI Listing

Publication Analysis

Top Keywords

preanalytic laboratory
8
laboratory testing
8
testing errors
8
elevated glucose
8
decision trees
8
glucose concentration
8
detection preanalytic
4
errors
4
errors statistically
4
statistically guided
4

Similar Publications

Cutting through the noise: A narrative review of Alzheimer's disease plasma biomarkers for routine clinical use.

J Prev Alzheimers Dis

January 2025

Clinical Memory Research Unit, Clinical Sciences in Malmö, Lund University, Lund, Sweden; Memory Clinic, Skåne University Hospital, Sweden. Electronic address:

As novel, anti-amyloid therapies have become more widely available, access to timely and accurate diagnosis has become integral to ensuring optimal treatment of patients with early-stage Alzheimer's disease (AD). Plasma biomarkers are a promising tool for identifying AD pathology; however, several technical and clinical factors need to be considered prior to their implementation in routine clinical use. Given the rapid pace of advancements in the field and the wide array of available biomarkers and tests, this review aims to summarize these considerations, evaluate available platforms, and discuss the steps needed to bring plasma biomarker testing to the clinic.

View Article and Find Full Text PDF

Flow electrolytic separation of radionuclides for interference suppression in γ-spectrometry.

Anal Chim Acta

February 2025

Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, CH-8093, Switzerland; Laboratory of Radiochemistry, Centre for Nuclear Engineering and Sciences, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland. Electronic address:

Background: The direct and accurate measurement of low-level γ-emitters in samples from nuclear facilities is a challenging task due to the presence of high activities of dominant radionuclides. In this case a complex chemical separation is required to remove interfering radionuclides prior to γ-spectrometric analysis. Several radionuclides such as, Ag, Sb, Sn and Te are of relevance for radioanalytical analysis in nuclear facilities.

View Article and Find Full Text PDF

Creutzfeldt-Jakob disease (CJD) is a rare, fatal, and transmissible neurodegenerative disorder caused by prion proteins. Handling specimens from individuals with suspected or confirmed cases presents a safety challenge to hospital workers including clinical laboratory staff. As no national guidelines exist, the clinical pathology laboratory must establish protocols for handling these specimens to ensure sufficient protective measures.

View Article and Find Full Text PDF

Background: Traditionally, urine analysis of calcium (Ca), magnesium (Mg) and phosphate (Phos) requires acidification of the sample. This study aims to assess the need for acidification and evaluate preanalytical factors that influence the accurate measurement of these analytes in urine.

Results: A total of 107 spot urine samples from patients with a median age of 9 years (95% ≤ 21 years of age, range 5 days to 46 years) were analyzed for Ca (n = 94), Mg (n = 97), and Phos (n = 102) with and without acidification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!