Sequential proteolytic cleavage of the amyloid precursor protein (APP) by β-site APP-cleaving enzyme 1 (BACE1) and the γ-secretase complex produces the amyloid-β peptide (Aβ), which is believed to play a critical role in the pathology of Alzheimer's disease (AD). The aspartyl protease BACE1 catalyzes the rate-limiting step in the production of Aβ, and as such it is considered to be an important target for drug development in AD. The development of a BACE1 inhibitor therapeutic has proven to be difficult. The active site of BACE1 is relatively large. Consequently, to achieve sufficient potency, many BACE1 inhibitors have required unfavorable physicochemical properties such as high molecular weight and polar surface area that are detrimental to efficient passage across the blood-brain barrier. Using a rational drug design approach we have designed and developed a new series of hydroxyethylamine-based inhibitors of BACE1 capable of lowering Aβ levels in the brains of rats after oral administration. Herein we describe the in vitro and in vivo characterization of two of these molecules and the overall relationship of compound properties [e.g., in vitro permeability, P-glycoprotein (P-gp) efflux, metabolic stability, and pharmacological potency] to the in vivo pharmacodynamic effect with more than 100 compounds across the chemical series. We demonstrate that high in vitro potency for BACE1 was not sufficient to provide central efficacy. A combination of potency, high permeability, low P-gp-mediated efflux, and low clearance was required for compounds to produce robust central Aβ reduction after oral dosing.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.112.197954DOI Listing

Publication Analysis

Top Keywords

vitro potency
8
potency bace1
8
bace1
7
establishing relationship
4
vitro
4
relationship vitro
4
potency
4
potency pharmacokinetic
4
pharmacokinetic pharmacodynamic
4
pharmacodynamic parameters
4

Similar Publications

Exploring the Potential of Malvidin and Echiodinin as Probable Antileishmanial Agents Through In Silico Analysis and In Vitro Efficacy.

Molecules

January 2025

Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru.

Leishmaniasis, a neglected tropical disease caused by species, presents serious public health challenges due to limited treatment options, toxicity, high costs, and drug resistance. In this study, the in vitro potential of malvidin and echioidinin is examined as antileishmanial agents against , , and , comparing their effects to amphotericin B (AmpB), a standard drug. Malvidin demonstrated greater potency than echioidinin across all parasite stages and species.

View Article and Find Full Text PDF

This study reports the design, synthesis, and characterization of a novel series of benzene sulfonamide-triazole hybrid derivatives, to evaluate their anticancer potential against colorectal cancer. The synthesized compounds were characterized using NMR and HRMS spectroscopic techniques. In vitro cytotoxicity assessments revealed that compounds 5g and 5j exhibited significant anticancer effects.

View Article and Find Full Text PDF

Immune cell engagers are molecular agents, usually antibody-based constructs, engineered to recruit immune cells against cancer cells and kill them. They are versatile and powerful tools for cancer immunotherapy. Despite the multiplication of engagers tested and accepted in the clinic, how molecular and cellular parameters influence their actions is poorly understood.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a common gastrointestinal cancer, and even though oxaliplatin chemotherapy is effective, there is a high likelihood of relapse, indicating the presence of oxaliplatin-resistant CRC. Therefore, it is crucial to comprehend the molecular mechanisms of oxaliplatin resistance and develop effective strategies to counter drug resistance. Numerous studies have demonstrated the close association between microRNAs (miRNAs) and drug resistance in CRC.

View Article and Find Full Text PDF

In this research, a series of novel hydrazone derivatives based on pyrazolopyridothiazinylacetohydrazide were designed, synthesized, and evaluated for their in vitro cytotoxic potency on several human colon cancer cells (HTC116, HT-29, and LoVo). After MTT and SRB assays four of the most active derivatives: hydrazide GH and hydrazones GH7, GH8, and GH11, were chosen for further investigation. Hydrazone GH11 had the highest cytotoxic activity (IC50 values of c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!