Wall teichoic acid (WTA) or related polyanionic cell wall glycopolymers are produced by most gram-positive bacterial species and have been implicated in various cellular functions. WTA and the proton gradient across bacterial membranes are known to control the activity of autolysins but the molecular details of these interactions are poorly understood. We demonstrate that WTA contributes substantially to the proton-binding capacity of Staphylococcus aureus cell walls and controls autolysis largely via the major autolysin AtlA whose activity is known to decline at acidic pH values. Compounds that increase or decrease the activity of the respiratory chain, a main source of protons in the cell wall, modulated autolysis rates in WTA-producing cells but did not affect the augmented autolytic activity observed in a WTA-deficient mutant. We propose that WTA represents a cation-exchanger like mesh in the gram-positive cell envelopes that is required for creating a locally acidified milieu to govern the pH-dependent activity of autolysins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3402425 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041415 | PLOS |
J Hazard Mater
November 2024
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China. Electronic address:
Nonradical electron transfer process (ETP) is a promising pathway for pollutant degradation in peroxydisulfate-based advanced oxidation processes (PDS-AOPs). However, there is a critical bottleneck to trigger ETP by sludge-derived hydrochar due to its negatively charged surface, inferior porosity and electrical conductivity. Herein, pyrrolic-N doped and carbon defected sludge-derived hydrochar (SDHC-N) was constructed for PDS activation to degrade anilines ionizable organic compounds (IOC) through complete nonradical ETP oxidation.
View Article and Find Full Text PDFTheranostics
May 2022
Department of Oral Surgery, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Inflammatory macrophages and osteoclasts (OCs) play critical roles in joint inflammation, which feature the excessive production of reactive oxygen species (ROS), resulting in synovial inflammation and bone erosion. Scavenging ROS, especially by modulating mitochondrial metabolic activity, could be a desirable strategy for the management of inflammatory joints. This study aimed to develop a mitochondria-targeted supramolecular drug delivery system with exogenous and endogenous ROS-scavenging activities for the treatment of joint inflammation.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
April 2021
Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark.
For the past century, the importance of the Bohr effect for blood oxygen delivery has been deemed secondary to the influence of the uptake of carbon dioxide when the blood is deoxygenated (the Haldane effect). This is, however, not the case. The simultaneous oxygen and proton binding to hemoglobin can be modelled by a two-ligand, two-state formulation, while the resulting changes in acid-base status of the surrounding solution can be assessed according to Stewart's model for strong ion difference.
View Article and Find Full Text PDFEnviron Pollut
December 2020
School of Environment, Tsinghua University, Beijing, 100084, China. Electronic address:
Despite the strong ability for complexation of heavy metals, a high amount of humic substances (HS) is always contained in membrane retentate from municipal solid waste landfill leachates treatment processes. Submerged Combustion Evaporation (SCE) can be used to effectively concentrate the membrane retentate. However, the impact of the SCE treatment on HS complexation capacity is still unclear.
View Article and Find Full Text PDFSci Total Environ
August 2020
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148 Kiel, Germany.
Marine dissolved organic matter (DOM) plays a key role in the current and future global carbon cycle, which supports life on Earth. Trace metals such as iron, an essential micronutrient, compete with protons and major ions for the binding to DOM. These competitive effects and the DOM binding capacity are related to the DOM acid-base properties, which also influence DOM transport and reactivity in marine waters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!