A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Regulation of the cyanobacterial CO2-concentrating mechanism involves internal sensing of NADP+ and α-ketogutarate levels by transcription factor CcmR. | LitMetric

Inorganic carbon is the major macronutrient required by organisms utilizing oxygenic photosynthesis for autotrophic growth. Aquatic photoautotrophic organisms are dependent upon a CO(2) concentrating mechanism (CCM) to overcome the poor CO(2)-affinity of the major carbon-fixing enzyme, ribulose-bisphosphate carboxylase/oxygenase (Rubisco). The CCM involves the active transport of inorganic forms of carbon (C(i)) into the cell to increase the CO(2) concentration around the active site of Rubisco. It employs both bicarbonate transporters and redox-powered CO(2)-hydration enzymes coupled to membranous NDH-type electron transport complexes that collectively produce C(i) concentrations up to a 1000-fold greater in the cytoplasm compared to the external environment. The CCM is regulated: a high affinity CCM comprised of multiple components is induced under limiting external Ci concentrations. The LysR-type transcriptional regulator CcmR has been shown to repress its own expression along with structural genes encoding high affinity C(i) transporters distributed throughout the genome of Synechocystis sp. PCC 6803. While much has been learned about the structural genes of the CCM and the identity of the transcriptional regulators controlling their expression, little is known about the physiological signals that elicit the induction of the high affinity CCM. Here CcmR is studied to identify metabolites that modulate its transcriptional repressor activity. Using surface plasmon resonance (SPR) α-ketoglutarate (α-KG) and the oxidized form of nicotinamide adenine dinucleotide phosphate (NADP(+)) have been identified as the co-repressors of CcmR. Additionally, ribulose-1,5-bisphosphate (RuBP) and 2-phosphoglycolate (2-PG) have been confirmed as co-activators of CmpR which controls the expression of the ABC-type bicarbonate transporter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401165PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0041286PLOS

Publication Analysis

Top Keywords

high affinity
12
affinity ccm
8
structural genes
8
ccm
6
regulation cyanobacterial
4
cyanobacterial co2-concentrating
4
co2-concentrating mechanism
4
mechanism involves
4
involves internal
4
internal sensing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!