A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae. | LitMetric

We have integrated and coordinately expressed in Saccharomyces cerevisiae a xylose isomerase and cellobiose phosphorylase from Ruminococcus flavefaciens that enables fermentation of glucose, xylose, and cellobiose under completely anaerobic conditions. The native xylose isomerase was active in cell-free extracts from yeast transformants containing a single integrated copy of the gene. We improved the activity of the enzyme and its affinity for xylose by modifications to the 5'-end of the gene, site-directed mutagenesis, and codon optimization. The improved enzyme, designated RfCO*, demonstrated a 4.8-fold increase in activity compared to the native xylose isomerase, with a K(m) for xylose of 66.7 mM and a specific activity of 1.41 μmol/min/mg. In comparison, the native xylose isomerase was found to have a K(m) for xylose of 117.1 mM and a specific activity of 0.29 μmol/min/mg. The coordinate over-expression of RfCO* along with cellobiose phosphorylase, cellobiose transporters, the endogenous genes GAL2 and XKS1, and disruption of the native PHO13 and GRE3 genes allowed the fermentation of glucose, xylose, and cellobiose under completely anaerobic conditions. Interestingly, this strain was unable to utilize xylose or cellobiose as a sole carbon source for growth under anaerobic conditions, thus minimizing yield loss to biomass formation and maximizing ethanol yield during their fermentation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10295-012-1169-yDOI Listing

Publication Analysis

Top Keywords

xylose cellobiose
16
xylose isomerase
16
anaerobic conditions
12
native xylose
12
xylose
10
saccharomyces cerevisiae
8
cellobiose phosphorylase
8
fermentation glucose
8
glucose xylose
8
cellobiose completely
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!