The role of redox environment in neurogenic development.

Arch Biochem Biophys

Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7.

Published: June 2013

The dynamic changes of cellular redox elements during neurogenesis allow the control of specific programs for selective lineage progression. There are many redox couples that influence the cellular redox state. The shift from a reduced to an oxidized state and vice versa may act as a cellular switch mechanism of stem cell mode of action from proliferation to differentiation. The redox homeostasis ensures proper functioning of redox-sensitive signaling pathways through oxidation/reduction of critical cysteine residues on proteins involved in signal transduction. This review presents the current knowledge on the relation between changes in the cellular redox environment and stem cell programming in the course of commitment to a restricted neural lineage, focusing on in vivo neurogenesis and in vitro neuronal differentiation. The first two sections outline the main systems that control the intracellular redox environment and make it more oxidative or reductive. The last section provides the background on redox-sensitive signaling pathways that regulate neurogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2012.08.002DOI Listing

Publication Analysis

Top Keywords

redox environment
12
cellular redox
12
changes cellular
8
stem cell
8
redox-sensitive signaling
8
signaling pathways
8
redox
6
role redox
4
environment neurogenic
4
neurogenic development
4

Similar Publications

Operando Photoelectrochemical Surface-Enhanced Raman Spectroscopy: Interfacial Mechanistic Insights and Simultaneous Detection of Patulin.

Anal Chem

January 2025

Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.

View Article and Find Full Text PDF

Ground-level ozone (O) can infiltrate indoor environments, severely impacting the environment and human health. Moisture-induced catalyst deactivation is a major challenge in catalytic ozone removal. MOF-template-derived heterojunctions supported by carbon materials can prevent chemisorption of water vapor at active sites.

View Article and Find Full Text PDF

Circadian Proteomics Reassesses the Temporal Regulation of Metabolic Rhythms by Chlamydomonas Clock.

Plant Cell Environ

January 2025

Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India.

Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations.

View Article and Find Full Text PDF

Advances of Stimuli-Responsive Amphiphilic Copolymer Micelles in Tumor Therapy.

Int J Nanomedicine

January 2025

Department of pharmacy, west china hospital,  Sichuan University, Chengdu, 610041, People's Republic of China.

Amphiphilic copolymers are composed of both hydrophilic and hydrophobic chains, which can self-assemble into polymeric micelles in aqueous solution via the hydrophilic/hydrophobic interactions. Due to their unique properties, polymeric micelles have been widely used as drug carriers. Poorly soluble drugs can be covalently attached to polymer chains or non-covalently incorporated in the micelles, with improved pharmacokinetic profiles and enhanced efficacy.

View Article and Find Full Text PDF

Rapid and accurate detection of Escherichia coli (E. coli) is critical for maintaining water quality, and protecting aquatic ecosystems and public health. This research focuses on the development of a Förster resonance energy transfer (FRET)-based "turn-on" fluorescent nanosensor for real time, sensitive detection of E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!