The temperature-dependent infrared spectroscopy studies of one novel antiferroelectric liquid crystal (AFLC), known under the MHPSBO10 acronym, have been undertaken. The FT-IR measurements have been performed for homeotropic and planar heterogeneous sample geometries. The main order parameters have been determined and followed with temperature. The presented study delivers complex insight into the evolution of the vibrational spectrum upon phase transitions, covering the whole mesophase range. The experimental studies have been supported by theoretical studies of MHPSBO10 in confined geometries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp305099v | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.
This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
Single-Photon Avalanche Photodiodes (SPADs) are increasingly utilized in high-temperature-operated, high-performance Light Detection and Ranging (LiDAR) systems as well as in ultra-low-temperature-operated quantum science applications due to their high photon sensitivity and timing resolution. Consequently, the jitter value of SPADs at different temperatures plays a crucial role in LiDAR systems and Quantum Key Distribution (QKD) applications. However, limited studies have been conducted on this topic.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Intermolecular hydrogen bonds between carboxyl (COO) and amino groups are a common weak interaction in proteins. Infrared (IR) spectral assignment of such an intermolecular hydrogen bond provides a fingerprint for studying protein-protein interactions as its absorption frequency is affected by the molecular electrostatic environment. Temperature-dependent FTIR and temperature-jump time-resolved IR absorbance difference spectra of several typical amino acids and those of wild type and single-site mutated αB-crystallin were performed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Southern University of Science and Technology, Materials Science and Engineering, 1088 Xueyuan Blvd., Nanshan District, 518055, Shenzhen, CHINA.
Open-shell radical materials, which are characterized by unpaired electrons, have led to revolutionary breakthroughs in material science due to their unique optoelectronic properties. However, the involvement of organic radicals in photodynamic therapy (PDT) has rarely been reported or discussed. This work studies two photosensitizer analogs.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!