Virulence factors and mechanisms of antibiotic resistance of haemophilus influenzae.

Folia Med (Plovdiv)

Department of Medical Microbiology, Medical University, Sofia, Bulgaria.

Published: September 2012

Haemophilus influenzae is a small gram-negative coccobacillus known as one of the major causes of meningitis, otitis media, sinusitis and epiglottitis, especially in childhood, as well as infections of the lower respiratory tract, eye infections and bacteremia. It has several virulence factors that play a crucial role in patient inflammatory response. Its capsule, the adhesion proteins, pili, the outer membrane proteins, the IgA1 protease and, last but not least, the lipooligosaccharide, increase the virulence of H. influenzae by participating actively in the host invasion the host by the microrganism. Some of these factors are used in vaccine preparations. In the post-vaccine era, an increase has been noticed in many European countries of invasive infections caused by non-encapsulated strains of H. influenzae which have a number of virulence factors, some of which are subject of serious research aiming at creating new vaccines. Numerous mechanisms of antibiotic resistance in H. influenzae are known which can compromise the empirical treatment of infections caused by this microorganism. The increasing incidence of resistance to aminopenicillins, induced not only by enzyme mechanisms but also by a change of their target is turning into a significant problem. Resistance to other antibiotics such as macrolides, tetracyclines, chloramphenicol, trimethoprim/sulfamethoxazole, and fluoroquinolones, commonly used to treat Haemophilus infections has also been described.

Download full-text PDF

Source
http://dx.doi.org/10.2478/v10153-011-0073-yDOI Listing

Publication Analysis

Top Keywords

virulence factors
12
mechanisms antibiotic
8
antibiotic resistance
8
haemophilus influenzae
8
infections caused
8
influenzae
5
infections
5
virulence
4
factors mechanisms
4
resistance
4

Similar Publications

Ruminococcus gnavus is a gut bacterium found in > 90% of healthy individuals, but its increased abundance is also associated with chronic inflammatory diseases, particularly Crohn's disease. Nevertheless, its global distribution and intraspecies genomic variation remain understudied. By surveying 12,791 gut metagenomes, we recapitulated known associations with metabolic diseases and inflammatory bowel disease.

View Article and Find Full Text PDF

Yersinia enterocolitica causes food-borne gastroenteritis. However, little is known about the genetic diversity and pathogenic potential of Y. enterocolitica in different food commodities.

View Article and Find Full Text PDF

Background: Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system.

View Article and Find Full Text PDF

Unlabelled: Mutations affecting flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving , , and , which creates a feedback system to regulate flagella production. Through genomic analysis of clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene and regulatory gene .

View Article and Find Full Text PDF

Enterohemorrhagic (EHEC) is a contagious foodborne pathogen that specifically colonizes the human large intestine, which is regulated by different environmental stimuli within the gut. Transcriptional regulation of EHEC virulence and infection has been extensively studied, while the posttranscriptional regulation of these processes by small RNAs (sRNAs) remains not fully understood. Here we present a virulence-regulating pathway in EHEC O157:H7, in which the sRNA EvrS binds to and destabilizes the mRNA of Z2269, a novel transcriptional regulator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!