Absolute stereochemical determination of chiral carboxylates using an achiral molecular tweezer.

Chemistry

Department of Chemistry, College of Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749 Korea.

Published: September 2012

A new type of molecular tweezer (1) has been synthesized for the direct determination of the absolute configuration of chiral carboxylates without analyte derivatization. Upon the addition of diamine and anionic guests, 1 exhibited shifts in its absorption spectrum with clear isosbestic points. The continuous variation method indicated that both the diamine and anionic guests form 1:1 host-guest complexes with 1 with very high binding affinity. When Boc-L-Ala (BLA) as a form of tetrabutylammonium salt was added to 1, a weak negative CD signal was observed. This weak CD signal was dramatically changed to a strong positive CD couplet upon addition of achiral 1,12-diaminododecane. Such a positive CD couplet was observed for all of the tested L-amino acid derivatives, while the D-amino acid derivatives gave the opposite signals. As a result of these unique characteristics of 1, it can be utilized as a highly sensitive probe for the absolute stereochemical determination of chiral carboxylates.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201200371DOI Listing

Publication Analysis

Top Keywords

chiral carboxylates
12
absolute stereochemical
8
stereochemical determination
8
determination chiral
8
molecular tweezer
8
diamine anionic
8
anionic guests
8
positive couplet
8
acid derivatives
8
carboxylates achiral
4

Similar Publications

Conformational versatility among crystalline solids of L-phenylalanine derivatives.

Acta Crystallogr C Struct Chem

February 2025

Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Piso 3, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina.

In this study, we present a new N-derivative of L-phenylalanine with 2-naphthaldehyde (PN), obtained by the Schiff base formation procedure and its subsequent reduction. This compound was crystallized as a zwitterion {2-[(naphthalen-2-ylmethyl)azaniumyl]-3-phenylpropanoate, CHNO}, as an anion in a sodium salt (catena-poly[[diaquasodium(I)-di-μ-aqua] 2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoate monohydrate], {[Na(HO)](CHNO)·HO}), as a cation in a chloride salt [(1-carboxy-2-phenylethyl)(naphthalen-2-ylmethyl)azanium chloride acetic acid monosolvate, CHNO·Cl·CHCOOH], and additionally acting as a ligand in the pentacoordinated zinc compound aquabis{2-[(naphthalen-2-ylmethyl)amino]-3-phenylpropanoato-κO}zinc(II), [Zn(CHNO)(HO)] or [Zn(PN)(HO)], denoted (PN-Zn), with the amino acid derivative in its carboxylate form.

View Article and Find Full Text PDF

A C-H Arylation-Based Enantioselective Synthesis of Planar Chiral Cyclophanes.

Angew Chem Int Ed Engl

January 2025

University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, SWITZERLAND.

Despite the growing importance of planar chiral macrocyclophanes owing to their unique properties in different areas of chemistry, methods that are effective in controlling their planar chirality are restricted to certain molecular scaffolds. Herein, we report the first Pd(0)-catalyzed enantioselective intermolecular C-H arylation that induces planar chirality by installing bulky aryl groups through dynamic kinetic resolution (DKR). A computer-assisted approach allowed a fine-tuning of the structure of the employed chiral bifunctional phosphine-carboxylate ligands to achieve high enantioselectivities.

View Article and Find Full Text PDF

Synthesis of Enantiopure - and -Fused Octahydroisoindole-1-Phosphonic Acids from Octahydroisoindolones.

J Org Chem

January 2025

Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, 62209 Cuernavaca, Morelos, Mexico.

Phosphonic analogs of octahydroisoindole-1-carboxylic acids are bicyclic proline derivatives of interest in drug design and enzymatic mechanism studies. Here we report the stereoselective synthesis of the - and -fused octahydroisoindole system using oxazoloisoindolone lactam and 1,2-cyclohexanedicarboxylic anhydride as advanced chiral precursors, respectively, yielding enantiopure octahydroisoindolone intermediates with the desired stereochemistry at the ring junction. Finally, using these intermediates, the target (1,3a,7a)- and (1,3a,7a)-octahydroisoindole-1-phosphonic acids and their enantiomers were obtained with complete stereocontrol via highly diastereoselective addition of trimethyl phosphite to chiral -acyliminium ions as the key step.

View Article and Find Full Text PDF

A Protocol for GC-MS Profiling of Chiral Secondary Amino Acids.

Methods Mol Biol

January 2025

Laboratory of Analytical Biochemistry & Metabolomics, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.

A simple analytical workflow is described for gas chromatographic-mass spectrometric (GC-MS)-based chiral profiling of secondary amino acids (AAs) in biological matrices. The sample preparation is carried out directly in aqueous biological sample extracts and involves in situ heptafluorobutyl chloroformate (HFBCF) derivatization-liquid-liquid microextraction of nonpolar products into hexane phase followed by subsequent formation of the corresponding methylamides from the HFB esters by direct treatment with methylamine reagent solution. The (O, N) HFB-butoxycarbonyl-methylamide AA products (HFBOC-MA) are separated on a Chirasil-L-Val capillary column and quantitatively measured by GC-MS operated in selected ion monitoring (SIM) mode.

View Article and Find Full Text PDF

Chiral discrimination is an indispensable tool that has pivotal importance in the assignment of absolute configuration and determination of enantiomeric excess in chiral compounds. A series of enantiomerically pure -1,2-diaminocyclohexane (-DACH)-derived benzamides were first synthesized by simple chemical steps, and 14 variated derivatives have been assessed as NMR chiral solvating agents (CSAs) for discrimination of the signals of mandelic acid (MA) in H NMR analysis. The highly efficient chiral recognition of CSA on different substrates, including MAs, carboxylic acids, amino acid derivatives, and phosphoric acids (32 examples), was expanded via H, F, and P NMR spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!