Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A methyl-deficient diet (MD) lacking folic acid and the associated methyl donors choline and methionine, fed to the laboratory rat during the periods of oocyte and embryo development, has been shown to programme glucose metabolism in the offspring. The hepatic proteome of the male offspring of female rats fed MD diets for 3 weeks prior to mating and for the first 5 days of gestation has been examined by 2-dimensional gel electrophoresis. Three groups of differentially abundant proteins associated with energy metabolism, amino acid metabolism and antioxidant defence were identified in the soluble proteins extracted from the liver from the MD offspring at both 6 and 12 months of age. Altered mitochondrial activity in other programming models leads to a similar pattern of differential protein abundance. Two of the differentially abundant proteins were identified as GAPDH and PGK-1 by mass spectrometry. Western blotting showed that there were multiple isoforms of both proteins with similar molecular weights but different isoelectric points. The differentially abundant spots reduced in the MD offspring corresponded to minor isoforms of GAPDH and PGK-1. The levels of PPAR-alpha, SREBP and glucocorticoid receptor mRNAs associated with other models of prenatal programming were unchanged in the MD offspring. The data suggest that a diet deficient in folic acid and associated methyl donors fed during the peri-conception and early preimplantation periods of mammalian development affects mitochondrial function in the offspring and that the posttranslational modification of proteins may be important.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575887 | PMC |
http://dx.doi.org/10.1007/s12263-012-0314-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!