Cellobiose hydrolysis and decomposition by electrochemical generation of acid and hydroxyl radicals.

ChemSusChem

Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.

Published: October 2012

This paper addresses the hydrolysis of cellobiose to glucose and its further decomposition with electrochemically generated acid (H(+)) on a platinum electrode, and with electrochemically generated hydroxyl radicals (OH(·)) on boron-doped diamond (BDD). The results are compared with the hydrolysis promoted by conventional acid (H(2)SO(4)) and OH(·) (from Fenton's reaction) and supported by product analysis by using online HPLC (for soluble products) and online electrochemical mass spectrometry (for CO(2)). Cellobiose hydrolysis follows a first-order reaction, which obeys Arrhenius' law over the temperature range from 25-80 °C with different activation energies for the acid- and radical-promoted reaction, that is, approximately 118±8 and 55±1 kJ mol(-1), respectively. The high local acidity with electrochemically generated H(+) on the Pt electrode increases the rate of glucose formation, however, the active electrode (PtO(x)) interacts with glucose and decomposes it further to smaller organic acids. In addition, O(2) formed during the oxygen evolution reaction (OER) lowers the selectivity of glucose by forming side-products. OH(·) generated on a BDD electrode first hydrolyzes the cellobiose to glucose, but rapidly attacks the aldehyde on glucose, which is further decomposed to smaller aldoses and finally formaldehyde, which is subsequently oxidized electrochemically to formic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201200250DOI Listing

Publication Analysis

Top Keywords

electrochemically generated
12
cellobiose hydrolysis
8
hydroxyl radicals
8
cellobiose glucose
8
glucose
6
cellobiose
4
hydrolysis decomposition
4
decomposition electrochemical
4
electrochemical generation
4
acid
4

Similar Publications

Recyclability and recovery of carbon from waste printed circuit boards within a circular economy perspective: A review.

J Environ Manage

January 2025

Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada. Electronic address:

Waste printed circuit boards (WPCBs) are a significant component of electronic waste (e-waste) and are among the fastest-generating waste flows. The potentially negative impacts caused by e-waste on the environment and human health pose an increasingly apparent threat to people's everyday lives and well-being. The nonmetallic fraction (predominantly carbon) of WPCBs is characterized by heavy weight, low resource value, and complex composition, and these characteristics significantly restrict the recycling of the WPCBs to achieve a circular economy.

View Article and Find Full Text PDF

Electrochemical pH modulator coupled with Ni-based electrode for glucose sensing.

Talanta

January 2025

Université de Lorraine, CNRS, Laboratoire de Chimie Physique et Microbiologie pour Les Matériaux et L'Environnement (LCPME), Nancy F-54000, France.

The non-enzymatic electrochemical detection of glucose by direct oxidation using electrodes modified with suitable electrocatalysts is now well-established. However, it most often requires highly alkaline media, limiting dramatically the use of such electrodes at neutral pH. This is notably the case of Ni-based electrodes.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds resulting from incomplete burning of organic materials. This work describes the successful layer-by-layer fabrication of a novel zinc oxide nanocomposite made of zinc oxide nanoparticles, aniline, sodium dodecyl sulfate, and modified multi-walled carbon nanotubes on a stainless steel wire by electrodeposition. The coating and extraction conditions were screened, optimized, and validated using factorial design and central composite design, respectively.

View Article and Find Full Text PDF

Cellulose-Based Materials and Their Application in Lithium-Sulfur Batteries.

Polymers (Basel)

January 2025

Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, Argentina.

Lithium-sulfur (Li-S) batteries are promising candidates for next-generation energy storage due to their high energy density, cost-effectiveness, and environmental friendliness. However, their commercialization is hindered by challenges, such as the polysulfide shuttle effect, lithium dendrite growth, and low electrical conductivity of sulfur cathodes. Cellulose, a natural, renewable, and versatile biopolymer, has emerged as a multifunctional material to address these issues.

View Article and Find Full Text PDF

The corrosion of low-alloy steel in ethanolamine solution, simulating steam generator chemistry, is studied by in situ chronopotentiometry and electrochemical impedance spectroscopy combined with ex situ analysis of the obtained oxide films and model calculations. Hydrodynamic calculations of the proposed setup to study flow-assisted corrosion demonstrate that turbulent conditions are achieved. Quantum chemical calculations indicate the adsorption orientation of ethanolamine on the oxide surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!