Poly(A) binding proteins (PABPs) specifically bind the polyadenosine tail of mRNA and have been shown to be important for RNA polyadenylation, translation initiation, and mRNA stability. Using a modified L1 retrotransposition vector, we examined the effects of two PABPs (encoded by PABPN1 and PABPC1) on the retrotransposition activity of the L1 non-long-terminal-repeat (non-LTR) retrotransposon in both HeLa and HEK293T cells. We demonstrated that knockdown of these two genes by RNA interference (RNAi) effectively reduced L1 retrotransposition by 70 to 80% without significantly changing L1 transcription or translation or the status of the poly(A) tail. We identified that both poly(A) binding proteins were associated with the L1 ribonucleoprotein complex, presumably through L1 mRNA. Depletion of PABPC1 caused a defect in L1 RNP formation. Knockdown of the PABPC1 inhibitor PAIP2 increased L1 retrotransposition up to 2-fold. Low levels of exogenous overexpression of PABPN1 and PABPC1 increased L1 retrotransposition, whereas unregulated overexpression of these two proteins caused pleiotropic effects, such as hypersensitivity to puromycin and decreased L1 activity. Our data suggest that PABPC1 is essential for the formation of L1 RNA-protein complexes and may play a role in L1 RNP translocation in the host cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486150PMC
http://dx.doi.org/10.1128/MCB.06785-11DOI Listing

Publication Analysis

Top Keywords

polya binding
12
rnp formation
8
binding proteins
8
pabpn1 pabpc1
8
increased retrotransposition
8
retrotransposition
6
pabpc1
5
polya
4
binding protein
4
protein essential
4

Similar Publications

Mitochondrial ribosomes (mitoribosomes) are essential, and their function of synthesising mitochondrial proteins is universal. The core of almost all mitoribosomes is formed from a small number of long and self-folding rRNA molecules. In contrast, the mitoribosome of the apicomplexan parasite Toxoplasma gondii assembles from over 50 extremely short rRNA molecules.

View Article and Find Full Text PDF

Solution-phase nucleic acid reaction weaves interfacial barriers on unmodified electrodes: Just-in-time generation of sensor interface for convenient and highly sensitive bioassays.

Talanta

January 2025

The Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China. Electronic address:

Electrochemical bioassays that rely on sensor interfaces based on immobilized DNA probes often encounter challenges such as complex fabrication processes and limited binding efficiency. In this study, we developed a novel electrochemical bioassay that bypasses the need for probe immobilization by employing a solution-phase nucleic acid reaction to create interfacial barriers on unmodified electrodes, enabling rapid, just-in-time sensor interface formation. Specifically, a 3'-phosphorylated recognition probe was used to identify the target microRNA-21 (miR-21), followed by target recycling facilitated by duplex-specific nuclease (DSN), which resulted in extensive hydrolysis of the recognition probe into DNA fragments with 3'-hydroxyl ends.

View Article and Find Full Text PDF

RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.

View Article and Find Full Text PDF

Virtually all mRNAs acquire a poly(A) tail co-transcriptionally, but its length is dynamically regulated in the cytoplasm in a transcript-specific manner. The length of the poly(A) tail plays a crucial role in determining mRNA translation, stability, and localization. This dynamic regulation of poly(A) tail length is widely used to create post-transcriptional gene expression programs, allowing for precise temporal and spatial control.

View Article and Find Full Text PDF

African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious disease with devastating effects on the global pig industry. This warrants the development of effective control strategies, such as vaccines. However, previously developed inactivated vaccines have proven ineffective, while live-attenuated vaccines carry inherent safety risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!