The synthesis and characterization of LTi(O-i-Pr)(2) (1) and LTiCl(2) (2) complexes containing a new [ONNO]-type tetradentate diamine-diethanolate ligand such as (HOCMe(2)CH(2)NMeCH(2)CH(2)NMeCH(2)CMe(2)OH) (LH(2)) was achieved. Single-crystal X-ray analyses revealed that monomeric complexes 1 and 2 had pseudo-C(2) and pseudo-C(1) symmetric distorted octahedral geometry, respectively. Interestingly, complex 1 has fac-fac geometry for tetradentate L around a Ti centre in both solid and solution, whereas complex 2 has different geometry in solid (mer-fac, C(1)) and solution (fac-fac, C(2)). They are effective catalysts for the controlled ring opening polymerization of L-lactide, as shown by the linearity of the number average of the molecular weight of polylactides versus conversion, as well as narrow PDI values.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt31357j | DOI Listing |
Angew Chem Int Ed Engl
December 2024
Guangdong University of Technology, school of chemical engineering and light industry, Panyu, Guangzhou University City Outer Ring Road No. 100, 510006, Gaungzhou, CHINA.
The limited cycling durability of Zn anode, attributed to the absence of a robust electrolyte-derived solid electrolyte interphase (SEI), remains the bottleneck for the practical deployment of aqueous zinc batteries. Herein, we highlight the role of local supersaturation in governing the fundamental crystallization chemistry of Zn4SO4(OH)6·xH2O (ZSH) and propose a subtle supersaturation-controlled morphology strategy to tailor the interphase chemistry of Zn anode. By judiciously creating local high-supersaturation environment with organic caprolactam to manipulate the precipitation manner of zinc sulfate hydroxide (ZSH), lattice-lattice matched heterogeneous nucleation of ZSH (001) and Zn (002) is realized in aqueous ZnSO4, producing a dense, pseudo-coincidence interface capable of functioning as decent SEI.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.
We present a six-step cascade that converts 1,3-distyrylbenzenes (-stilbenes) into nonsymmetric pyrenes in 40-60% yields. This sequence merges photochemical steps, ,-alkene isomerization, a 6π photochemical electrocyclization (Mallory photocyclization); the new bay region cyclization, with two radical iodine-mediated aromatization steps; and an optional aryl migration. This work illustrates how the inherent challenges of engineering excited state reactivity can be addressed by logical design.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Qingdao Institute of BioEnergy and Bioprocess Technology Chinese Academy of Sciences, Bio-based Materials, Songling Road 189., 266101, Qingdao, CHINA.
The poly(lactic-co-glycolic acid) (PLGA) with completely alternating sequence has attracted growing attention as an ideal candidate in controlled drug delivery. However, the approach to completely alternating PLGA remains a challenge. Herein, we report the successful synthesis of completely alternating PLGA via highly regioselective and stereoselective ring-opening polymerization.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 37673, Republic of Korea.
The evaporation of drops on solid surfaces is a ubiquitous natural phenomenon, and their dynamics play a pivotal role in many biological, environmental, and industrial processes. However, the complexity of the underlying mechanisms has largely confined previous studies to liquid drop evaporation under atmospheric conditions. In this study, the first comprehensive investigation of the evaporation dynamics of conducting polymer-containing drops under controlled vacuum environments is presented.
View Article and Find Full Text PDFNanotechnology
December 2024
Chemistry, American University, 4400 Massachusetts Ave NW, Washington, Washington, District of Columbia, 20016-8002, UNITED STATES.
A phenol contains a six-membered, conjugated, aromatic ring that is bound to a hydroxyl group. These molecules are important in biomedical studies, aromatic food preparation, and petroleum engineering. Traditionally, phenols have been measured with several analytical techniques such as UV-VIS spectroscopy, fluorescence, liquid chromatography, and mass spectrometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!