Facile and efficient fabrication of photoresponsive microgels via thiol-Michael addition.

Macromol Rapid Commun

Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China.

Published: November 2012

A photoresponsive microgel is designed by the combination of a noncovalent assembly strategy with a covalent cross-linking method. End-functionalized poly(ethylene glycol) with azobenzene [(PEG-(Azo)(2))] was mixed with acrylate-modified β-CD (β-CD-MAA) to form photoresponsive inclusion complex through host-guest interaction. The above photoresponsive complex was cross-linked by thiol-functionalized PEG (PEG-dithiol) via Michael addition click reaction. The photoreversibility of resulted microgel was studied by TEM, UV-Vis spectroscopy, and (1)H NMR measurements. The characterization results indicated that the reversible size changes of the microgel could be achieved by alternative UV-Vis irradiations with good repeatability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201200439DOI Listing

Publication Analysis

Top Keywords

facile efficient
4
efficient fabrication
4
photoresponsive
4
fabrication photoresponsive
4
photoresponsive microgels
4
microgels thiol-michael
4
thiol-michael addition
4
addition photoresponsive
4
photoresponsive microgel
4
microgel designed
4

Similar Publications

The Facile Solid-Phase Synthesis of Thiazolo-Pyrimidinone Derivatives.

Molecules

January 2025

Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701, Republic of Korea.

A thiazolo-pyrimidinone derivative library was developed through a facile solid-phase synthesis method. For the reaction, the thiazolo[4,5-]pyrimidin-7(6)-one structure was synthesized through efficient Thorpe-Ziegler and cyclization reactions. The thiazolo[4,5-]pyrimidin-7(6)-one derivative library with a diversity of three had a total of four synthesis steps and 57 compounds.

View Article and Find Full Text PDF

Metal-free materials have been proved to be promising replacements of traditional metal-based catalysts for advanced oxidation reactions. Carbon nitride was found to be able to activate HO and generate hydroxyl radicals (•OH). Nevertheless, the performance of carbon nitride is highly dependent on an external light source.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a typical environmental estrogen that is distributed worldwide and has the potential to pose a hazard to the ecological environment and human health. The development of an efficient and sensitive sensing strategy for the monitoring of BPA residues is of paramount importance. A novel electrochemical sensor based on carbon black and carbon nanofibers composite (CB/f-CNF)-assisted signal amplification has been successfully constructed for the amperometric detection of BPA in foods.

View Article and Find Full Text PDF

Facile and atom-economical synthesis of highly efficient chitosan-based flame retardants towards fire-retarding and antibacterial multifunctional coatings on cotton fabrics.

Int J Biol Macromol

January 2025

The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), College of Chemistry, Sichuan University, Chengdu 610064, China.

The development of bio-based flame retardants has garnered significant attention, however, significant challenges remain in achieving efficient flame retardancy and eco-friendly preparation methods. Herein, we propose a facile, atomic-efficient, and eco-friendly strategy for synthesizing a trinity chitosan-based flame retardant, phosphite-protonated chitosan (PCS). The chemical structure was systematically analyzed and the impact of varying degrees of protonation on the dissolution behavior and rheological properties were investigated.

View Article and Find Full Text PDF

Enzyme immobilization is an efficient and cost-effective approach to recovering, stabilizing, and enhancing enzyme catalytic properties. It is a challenge, however, for coimmobilized multiple enzymes to perform consecutive reactions without being inactivated under similar conditions. Here, we present a facile enzyme immobilization platform using β-lactoglobulin amyloid fibril hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!