In the context of 1960s research on biological membranes, scientists stumbled upon a curiously coloured material substance, which became called the "purple membrane." Interactions with the material as well as chemical analyses led to the conclusion that the microbial membrane contained a photoactive molecule similar to rhodopsin, the light receptor of animals' retinae. Until 1975, the find led to the formation of novel objects in science, and subsequently to the development of a field in the molecular life sciences that comprised biophysics, bioenergetics as well as membrane and structural biology. Furthermore, the purple membrane and bacteriorhodopsin, as the photoactive membrane transport protein was baptized, inspired attempts at hybrid bio-optical engineering throughout the 1980s. A central motif of the research field was the identification of a functional biological structure, such as a membrane, with a reactive material substance that could be easily prepared and manipulated. Building on this premise, early purple membrane research will be taken as a case in point to understand the appearance and transformation of objects in science through work with material substances. Here, the role played by a perceptible material and its spontaneous change of colour, or reactivity, casts a different light on objects and experimental practices in the late twentieth century molecular life sciences. With respect to the impact of chemical working and thinking, the purple membrane and rhodopsins represent an influential domain straddling the life and chemical sciences as well as bio- and material technologies, which has received only little historical and philosophical attention. Re-drawing the boundary between the living and the non-enlivened, these researches explain and model organismic activity through the reactivity of macromolecular structures, and thus palpable material substances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10739-012-9333-9 | DOI Listing |
J Agric Food Chem
January 2025
School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China.
Stylo () exhibits excellent tolerance to low-phosphate (Pi) availability, but the underlying mechanisms responsible for improving the phosphorus (P) utilization efficiency (PUE) remain unclear. This study employed metabolomics, lipidomics, and gene expression analyses to investigate the differential responses to low-Pi stress between the high-PUE genotype CF047827 and the cultivar Reyan No. 2.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China. Electronic address:
Osteosarcoma is a highly aggressive tumor that originates in the bone and often infiltrates nearby bone cells. It is the most prevalent type of primary bone cancer among the various bone malignancies. Traditional cancer treatment methods such as surgery, chemotherapy, immunotherapy, and radiotherapy have had restricted success.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Biophysics, Faculty of Science, Cairo University, Giza, 12613, Egypt.
Biomolecules
November 2024
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France.
Bacteria respond to metal pollution through sensors that control the uptake and the detoxification machineries. Specificity in metal recognition is therefore a prerequisite for triggering the appropriate response, particularly when facing a mixture of metals. In response to Cu, the purple bacterium induces the efflux Cu-ATPase CopA by the Cu regulator CopR.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
January 2025
Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia. Electronic address:
The resilience of biological systems to fluctuating environmental conditions is a crucial evolutionary advantage. In this study, we examine the thermo- and piezo-stability of the LH1-RC pigment-protein complex, the simplest photosynthetic unit, in three species of phototropic purple bacteria, each containing only this core complex. Among these species, Blastochloris viridis and Blastochloris tepida utilize bacteriochlorophyll b as the main light-harvesting pigment, while Rhodospirillum rubrum relies on bacteriochlorophyll a.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!