Background: Thyrosulfoconjugation appears to facilitate fetal-to-maternal transfer of 3,3'-diiodothyronine-sulfate (T(2)S). Elevated maternal levels of T(2)S cross-reactive material (compound W) are found in humans, with higher levels found in venous cord blood than in arterial samples. These findings are consistent with the postulate that the placenta plays an essential role in compound W production.
Methods: Serum compound W levels were measured by a T(2)S-specific radioimmunoassay in 60 serum samples from newborns with hyperbilirubinemia, age 1-30 d. In addition, 59 maternal serum samples, from day 1 to day 7 after uneventful deliveries, were studied.
Results: As compared with day 1, at day 5, the mean (±SE) compound W level fell to 43.5 ± 6.8% (decay half-life (t(1/2)) = 4.12 d) and to 33.7 ± 4.6% (decay t(1/2) = 2.82 d) in the newborn and maternal groups, respectively. In the mothers, the level continued to decline along the same slope through day 7. In the newborns, however, the mean compound W level entered a slower phase of decay after the fifth day with a decay t(1/2) = 10.9 d.
Conclusion: Compound W is cleared at similar rates in newborn and postpartum maternal sera. This is consistent with the postulate that compound W is produced in the placenta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/pr.2012.116 | DOI Listing |
Fluids Barriers CNS
January 2025
Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.
Background: Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance.
View Article and Find Full Text PDFClin Implant Dent Relat Res
February 2025
Department of Dental Medicine, Division of Pediatric Dentistry, Karolinska Institutet, Huddinge, Sweden.
Objective: This cross-sectional study aimed to investigate the salivary profile of inflammatory mediators in individuals with periodontal and peri-implant disease as compared to individuals with periodontal and peri-implant health.
Materials And Methods: Saliva samples were collected from 155 participants (mean age 63.3 ± 11.
Colloids Surf B Biointerfaces
January 2025
Jilin Provincial Key Laboratory of Oral Biomedical Engineering, Hospital of Stomatology, Jilin University, Changchun, China; Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, China. Electronic address:
Oral ulcers are prone to recurrence and often complicated by bacterial infections. Currently, antibiotics, glucocorticoids, and anesthetics are commonly employed in clinical practice to alleviate symptoms. However, these medications exhibit limited retention in the moist and dynamic environment of the oral cavity, and their long-term use may lead to various side effects or drug resistance.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces (CPI), Albert Ludwigs Universität Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany.
Glaucoma, a leading cause of blindness, demands innovative and effective treatments that surpass the limitations of current drug and surgical interventions to lower intraocular pressure. This study describes the generation of cell-repellent hydrogel patches, their deposition on the ocular surface, and a photoinduced chemical binding between the patches and the collagens of the eye. The hydrophilic and protein-repellent hydrogel patch is composed of a copolymer made from dimethylacrylamide and a comonomer unit with anthraquinone moieties.
View Article and Find Full Text PDFBiomacromolecules
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!