The objectives of this study were to investigate the effects of veratridine (VER) on persistent sodium current (I(Na.P)), Na(+)/Ca(2+) exchange current (I(NCX)), calcium transients and the action potential (AP) in rabbit ventricular myocytes, and to explore the mechanism in intracellular calcium overload and myocardial contraction enhancement by using whole-cell patch clamp recording technique, visual motion edge detection system, intracellular calcium measurement system and multi-channel physiological signal acquisition and processing system. The results showed that I(Na.P) and reverse I(NCX) in ventricular myocytes were obviously increased after giving 10, 20 μmol/L VER, with the current density of I(Na.P) increasing from (-0.22 ± 0.12) to (-0.61 ± 0.13) and (-2.15 ± 0.14) pA/pF (P < 0.01, n = 10) at -20 mV, and that of reverse I(NCX) increasing from (1.62 ± 0.12) to (2.19 ± 0.09) and (2.58 ± 0.11) pA/pF (P < 0.05, n = 10) at +50 mV. After adding 4 μmol/L tetrodotoxin (TTX), current density of I(Na.P) and reverse I(NCX) returned to (-0.07 ± 0.14) and (1.69 ± 0.15) pA/pF (P < 0.05, n = 10). Another specific blocker of I(Na.P), ranolazine (RAN), could obviously inhibit VER-increased I(Na.P) and reverse I(NCX). After giving 2.5 μmol/L VER, the maximal contraction rate of ventricular myocytes increased from (-0.91 ± 0.29) to (-1.53 ± 0.29) μm/s (P < 0.01, n = 7), the amplitude of contraction increased from (0.10 ± 0.04) to (0.16 ± 0.04) μm (P < 0.05, n = 7), and the baseline of calcium transients (diastolic calcium concentration) increased from (1.21 ± 0.08) to (1.37 ± 0.12) (P < 0.05, n = 7). After adding 2 μmol/L TTX, the maximal contraction rate and amplitude of ventricular myocytes decreased to (-0.86 ± 0.24) μm/s and (0.09 ± 0.03) μm (P < 0.01, n = 7) respectively. And the baseline of calcium transients reduced to (1.17 ± 0.09) (P < 0.05, n = 7). VER (20 μmol/L) could extend action potential duration at 50% repolarization (APD(50)) and at 90% repolarization (APD(90)) in ventricular myocytes from (123.18 ± 23.70) to (271.90 ± 32.81) and from (146.94 ± 24.15) to (429.79 ± 32.04) ms (P < 0.01, n = 6) respectively. Early afterdepolarizations (EADs) appeared in 3 out of the 6 cases. After adding 4 μmol/L TTX, APD(50) and APD(90) were reduced to (99.07 ± 22.81) and (163.84 ± 26.06) ms (P < 0.01, n = 6) respectively, and EADs disappeared accordingly in 3 cases. It could be suggested that: (1) As a specific agonist of the I(Na.P), VER could result in I(Na.P) increase and intracellular Na(+) overload, and subsequently intracellular Ca(2+) overload with the increase of reverse I(NCX). (2) The VER-increased I(Na.P) could further extend the action potential duration (APD) and induce EADs. (3) TTX could restrain the abnormal VER-induced changes of the above-mentioned indexes, indicating that these abnormal changes were caused by the increase of I(Na.P). Based on this study, it is concluded that as the I(Na.P) agonist, VER can enhance reverse I(NCX) by increasing I(Na.P), leading to intracellular Ca(2+) overload and APD abnormal extension.

Download full-text PDF

Source

Publication Analysis

Top Keywords

reverse incx
24
ventricular myocytes
20
action potential
16
intracellular ca2+
12
ca2+ overload
12
potential duration
12
inap
12
calcium transients
12
inap reverse
12
adding μmol/l
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!