Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have previously demonstrated that the active vitamin D hormone, 1α,25-dihydroxyvitamin D3 (1,25(OH)(2)D(3)) and a cis-locked non-genomic analogue, protect skin cells from ultraviolet radiation (UV)-induced skin cell loss, DNA damage, immunosuppression and skin carcinogenesis. Herein, we used a low-calcaemic analogue, 1α-hydroxymethyl-16-ene-24,24-difluoro-25-hydroxy-26,27-bis-homovitamin D3 (QW), which has some transactivating capacity and is approximately 80-100 times less calcaemic than 1,25(OH)(2)D(3). QW (0.1-10 nM) significantly (p < 0.05-0.01) reduced UV-induced DNA lesions (CPD) in skin fibroblasts and keratinocytes and reduced cell death after UV exposure. Moreover, both 1,25(OH)(2)D(3) and QW (1 nM) were equally effective in significantly (p < 0.01) increasing levels of tumour suppressive p53 in cultured human keratinocytes at 3 and 6 h after UV exposure. In a hairless mouse model, both 1,25(OH)(2)D(3) and QW (22.8 ρmol cm(-2)) reduced UV-immunosuppression from 13.7 ± 1.3% to 0.1 ± 1.1% (p < 0.01) and 5.4 ± 1.5% (p < 0.01) respectively. When tested alongside 1,25(OH)(2)D(3) in a murine model of skin carcinogenesis. QW (22.8 ρmol cm(-2)) was not as effective as 1α,25(OH)(2)D(3) or a cis-locked analogue in reducing tumour formation or inhibiting tumour progression. It is possible that the dose required for QW to be effective as an anti-photocarcinogenesis agent in vivo is higher than for protection against the acute effects of UV exposure, but the dissociation between clear acute photo-protective effects and limited long term photoprotection is as yet unexplained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2pp25208b | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!