The AChE membrane-binding tail PRiMA is down-regulated in muscle and nerve of mice with muscular dystrophy by merosin deficiency.

Chem Biol Interact

Departamento de Bioquímica y Biología Molecular-A, Edificio de Veterinaria, Universidad de Murcia, Regional Campus of International Excellence Campus Mare Nostrum, E-30071 Espinardo, Murcia, Spain.

Published: March 2013

Since Duchenne muscular dystrophy was attributed to mutations in the dystrophin gene, more than 30 genes have been found to be causally related with muscular dystrophies, about half of them encoding proteins of the dystrophin-glycoprotein complex (DGC). Through laminin-2, the DGC bridges the muscle cytoskeleton and the extracellular matrix. Decreased levels of PRiMA-linked acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) have been observed in dystrophic muscle and nerve of dystrophin-deficient (mdx) and laminin-2 deficient (Lama2dy) mice. To help explain these observations, the relative content of AChE, BuChE and PRiMA mRNAs were compared in normal and Lama2dy mouse muscle and sciatic nerve. The 17-fold lower level of PRiMA mRNA in Lama2dy muscle explained the deficit in PRiMA-linked ChEs. This would increase acetylcholine availability and, eventually, the desensitization of nicotinic receptors. Abnormal development of the Schwann cells led to peripheral neuropathy in the Lama2dy mouse. Compared with normal nerve, dystrophic nerve displayed 4-fold less AChE-T mRNA, 3-fold more BuChE mRNA and 2.5-fold less PRiMA mRNA, which agreed with the lower AChE activity in dystrophic nerve, its increased BuChE activity and the specific drop in PRiMA-linked BuChE. The widely accepted role of glial cells as the source of BuChE, the observed dysmyelination of Lama2dy nerve and its increased BuChE activity support the idea that BuChE up-regulation is related with the aberrant differentiation of the Schwann cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2012.08.001DOI Listing

Publication Analysis

Top Keywords

muscle nerve
8
muscular dystrophy
8
buche
8
buche observed
8
compared normal
8
lama2dy mouse
8
prima mrna
8
schwann cells
8
dystrophic nerve
8
nerve increased
8

Similar Publications

The plantaris muscle is spindle-shaped in the posterior compartment of the leg. It is distinguished for its small muscle belly and an exceptionally long tendon. It presents with great variability in its origin and insertion when present.

View Article and Find Full Text PDF

Stilling-Duane syndrome, a congenital condition characterized by aberrant innervation of the lateral rectus muscle and agenesis of the abducent nerve or its nucleus, results in limited horizontal eye movements. It is often misdiagnosed as acquired abducent nerve paralysis. This report highlights the importance of considering Stilling-Duane syndrome in differential diagnoses.

View Article and Find Full Text PDF

Bone, cartilage, and soft tissue regeneration is a complex process involving many cellular activities across various cell types. Autografts remain the "gold standard" for the regeneration of these tissues. However, the use of autografts is associated with many disadvantages, including donor scarcity, the requirement of multiple surgeries, and the risk of infection.

View Article and Find Full Text PDF

Background: The gold standard of care for patients with severe peripheral nerve injury is autologous nerve grafting; however, autologous nerve grafts are usually limited for patients because of the limited number of autologous nerve sources and the loss of neurosensory sensation in the donor area, whereas allogeneic or xenografts are even more limited by immune rejection. Tissue-engineered peripheral nerve scaffolds, with the morphology and structure of natural nerves and complex biological signals, hold the most promise as ideal peripheral nerve "replacements".

Aim: To prepare allogenic peripheral nerve scaffolds using a low-toxicity decellularization method, and use human umbilical cord mesenchymal stem cells (hUC-MSCs) as seed cells to cultivate scaffold-cell complexes for the repair of injured peripheral nerves.

View Article and Find Full Text PDF

Introduction Control of blood pressure following acute type B aortic dissection usually requires sympatholytic antihypertensive medication. Although sympathetic nerve activity is central to blood pressure control, its role in the hypertensive response to acute aortic dissection has not been assessed. Methods A prospective pilot study was performed over an 18-month period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!