PYK (pyruvate kinase) plays a central role in the metabolism of many organisms and cell types, but the elucidation of the details of its function in a systems biology context has been hampered by the lack of specific high-affinity small-molecule inhibitors. High-throughput screening has been used to identify a family of saccharin derivatives which inhibit LmPYK (Leishmania mexicana PYK) activity in a time- (and dose-) dependent manner, a characteristic of irreversible inhibition. The crystal structure of DBS {4-[(1,1-dioxo-1,2-benzothiazol-3-yl)sulfanyl]benzoic acid} complexed with LmPYK shows that the saccharin moiety reacts with an active-site lysine residue (Lys335), forming a covalent bond and sterically hindering the binding of ADP/ATP. Mutation of the lysine residue to an arginine residue eliminated the effect of the inhibitor molecule, providing confirmation of the proposed inhibitor mechanism. This lysine residue is conserved in the active sites of the four human PYK isoenzymes, which were also found to be irreversibly inhibited by DBS. X-ray structures of PYK isoforms show structural differences at the DBS-binding pocket, and this covalent inhibitor of PYK provides a chemical scaffold for the design of new families of potentially isoform-specific irreversible inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3498827PMC
http://dx.doi.org/10.1042/BJ20121014DOI Listing

Publication Analysis

Top Keywords

lysine residue
12
pyruvate kinase
8
pyk
5
family covalent
4
covalent inhibitors
4
inhibitors block
4
block nucleotide
4
nucleotide binding
4
binding active
4
active site
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!