Physiological or α-processing of amyloid-β precursor protein (APP) prevents the formation of Aβ, which is deposited in the aging brain and may contribute to Alzheimer's disease. As such, drugs promoting this pathway could be useful for prevention of the disease. Along this line, we searched through a number of substances and unexpectedly found that a group of high-energy compounds (HECs), namely ATP, phosphocreatine, and acetyl coenzyme A, potently increased APP α-processing in cultured SH-SY5Y cells, whereas their cognate counterparts, i.e., ADP, creatine, or coenzyme A did not show the same effects. Other HECs such as GTP, CTP, phosphoenol pyruvate, and S-adenosylmethionine also promoted APP α-processing with varying potencies and the effects were abolished by energy inhibitors rotenone or NaN(3). The overall efficacy of the HECs in the process ranged from three- to four-fold, which was significantly greater than that exhibited by other physiological stimulators such as glutamate and nicotine. This suggested that the HECs were perhaps the most efficient physiological stimulators for APP α-processing. Moreover, the HECs largely offset the inefficient APP α-processing in aged human fibroblasts or in cells impaired by rotenone or H(2) O(2). Most importantly, some HECs markedly boosted the survival rate of SH-SY5Y cells in the death process induced by energy suppression or oxidative stress. These findings suggest a new, energy-dependent regulatory mechanism for the putative α-secretase and thus will help substantially in its identification. At the same time, the study raises the possibility that the HECs may be useful to energize and strengthen the aging brain cells to slow down the progression of Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2012.07923.xDOI Listing

Publication Analysis

Top Keywords

app α-processing
16
high-energy compounds
8
amyloid-β precursor
8
precursor protein
8
aging brain
8
alzheimer's disease
8
sh-sy5y cells
8
physiological stimulators
8
hecs
7
α-processing
5

Similar Publications

Background: Sarcopenia is closely associated with a poor quality of life and mortality, and its prevention and treatment represent a critical area of research. Resistance training is an effective treatment for older adults with sarcopenia. However, they often face challenges when receiving traditional rehabilitation treatments at hospitals.

View Article and Find Full Text PDF

Background: Digital technologies for type 2 diabetes mellitus (T2DM) care hold great potential to improve patients' health in the long term. Only a subset of telemedicine offerings are digital interventions that meet the criteria for prescribable digitale Gesundheitsanwendung (digital health apps; DiGAs) in Germany. Digital treatments further provide vast amounts of patient data that are important to generate evidence.

View Article and Find Full Text PDF

Digital Mindfulness Training for Burnout Reduction in Physicians: Clinician-Driven Approach.

JMIR Form Res

January 2025

Brown University, Department of Behavioral and Social Sciences, Providence, RI, United States.

Background: Physician burnout is widespread in health care systems, with harmful consequences on physicians, patients, and health care organizations. Mindfulness training (MT) has proven effective in reducing burnout; however, its time-consuming requirements often pose challenges for physicians who are already struggling with their busy schedules.

Objective: This study aimed to design a short and pragmatic digital MT program with input from clinicians specifically to address burnout and to test its efficacy in physicians.

View Article and Find Full Text PDF

The organization of the human genome in space and time is critical for transcriptional regulation and cell fate determination. However, robust methods for tracking genome organization or genomic interactions over time in living cells are lacking. Here, we developed a multicolor DNA labeling system, ParSite, to simultaneously track triple genomic loci in the U2OS cells.

View Article and Find Full Text PDF

Objective: To evaluate and compare the readability of information on different treatment options for breast cancer from WeChat public accounts, propose targeted improvement strategies based on the evaluation of the results of the various treatment options, and provide a reference for producers of WeChat public accounts from which to write highly readable information regarding breast cancer treatment options.

Methods: With "breast cancer" as keywords in April 2021, searches were implemented on Sogou WeChat website (https://weixin.sogou.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!