Background: There is a strong correlation between glucose-6-phosphate dehydrogenase (G6PD) deficiency and neonatal hyperbilirubinemia with a rare but potential threat of devastating acute bilirubin encephalopathy. G6PD deficiency was observed in 4-14% of hospitalized icteric neonates in Pakistan. G6PD c.563C > T is the most frequently reported variant in this population. The present study was aimed at evaluating the time to onset of hyperbilirubinemia and the postnatal bilirubin trajectory in infants having G6PD c.563C > T.

Methods: This was a case-control study conducted at The Aga Khan University, Pakistan during the year 2008. We studied 216 icteric male neonates who were re-admitted for phototherapy during the study period. No selection was exercised. Medical records showed that 32 were G6PD deficient while 184 were G6PD normal. Each infant was studied for birth weight, gestational age, age at the time of presentation, presence of cephalhematoma, sepsis and neurological signs, peak bilirubin level, age at peak bilirubin level, days of hospitalization, whether phototherapy or exchange blood transfusion was initiated, and the outcome. During hospital stay, each baby was tested for complete blood count, reticulocyte count, ABO and Rh blood type, direct antiglobulin test and quantitative G6PD estimation [by kinetic determination of G6PDH]. G6PDgenotype was analyzed in 32 deficient infants through PCR-RFLP analysis and gene sequencing.

Results: G6PD variants c.563C > T and c.131 C > G were observed in 21 (65%) and three (9%) of the 32 G6PD deficient infants, respectively. DNA of eight (25%) newborns remained uncharacterized. In contrast to G6PD normal neonates, infants with c.563C > T variant had significantly lower enzyme activity (mean ± 1SD; 0.3 ± 0.2 U/gHb vs. 14.0 ± 4.5 U/gHb, p < 0.001) experienced higher peak levels of total serum bilirubin (mean ± 1SD; 16.8 ± 5.4 mg/dl vs. 13.8 ± 4.6 mg/dl, p = 0.008) which peaked earlier after birth (mean ± 1SD 2.9 ± 1.6 vs. 4.3 ± 2.3 days, p = 0.007). No statistically significant difference was observed in mean weight, age at presentation, hemoglobin, reticulocyte count, TSH level, hospital stay or in the frequency of initiation of phototherapy or blood exchange between the two groups.

Conclusions: We concluded that infants with G6PD c.563C > T variant developed jaundice earlier than infants with normal G6PD enzyme levels. Compared to G6PD normal infants, G6PD c.563C > T carrying infants had significantly low G6PD activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529675PMC
http://dx.doi.org/10.1186/1471-2431-12-126DOI Listing

Publication Analysis

Top Keywords

g6pd c563c
16
g6pd
15
infants g6pd
12
g6pd normal
12
neonatal hyperbilirubinemia
8
infants
8
c563c variant
8
g6pd deficiency
8
g6pd deficient
8
peak bilirubin
8

Similar Publications

The hepatic clock synergizes with HIF-1α to regulate nucleotide availability during liver damage repair.

Nat Metab

January 2025

State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.

Nucleotide availability is crucial for DNA replication and repair; however, the coordinating mechanisms in vivo remain unclear. Here, we show that the circadian clock in the liver controls the activity of the pentose phosphate pathway (PPP) to support de novo nucleotide biosynthesis for DNA synthesis demands. We demonstrate that disrupting the hepatic clock by genetic manipulation or mistimed feeding impairs PPP activity in male mice, leading to nucleotide imbalance.

View Article and Find Full Text PDF

G6PD deficiency triggers dopamine loss and the initiation of Parkinson's disease pathogenesis.

Cell Rep

January 2025

Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada. Electronic address:

Loss of dopaminergic neurons in Parkinson's disease (PD) is preceded by loss of synaptic dopamine (DA) and accumulation of proteinaceous aggregates. Linking these deficits is critical to restoring DA signaling in PD. Using murine and human pluripotent stem cell (hPSC) models of PD coupled with human postmortem tissue, we show that accumulation of α-syn micro-aggregates impairs metabolic flux through the pentose phosphate pathway (PPP).

View Article and Find Full Text PDF

G6PD protects against cerebral ischemia-reperfusion injury by inhibiting excessive mitophagy.

Life Sci

January 2025

Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China. Electronic address:

Article Synopsis
  • The study investigates the role of glucose-6-phosphate dehydrogenase (G6PD) in exacerbating brain damage caused by cerebral ischemia-reperfusion injury (CIRI) after a stroke.
  • Researchers used various methods, including gene analysis and protein studies, to show that G6PD levels increase after ischemic events and that reducing G6PD leads to worsened brain damage and cell survival in models of ischemia.
  • The findings suggest a significant link between G6PD and mitophagy, indicating that manipulating G6PD levels could help develop new treatments for brain damage resulting from strokes.
View Article and Find Full Text PDF

Ferroptosis is linked to various pathological conditions; however, the specific targets and mechanisms through which traditional Chinese medicine influences ischemic stroke (IS)-induced ferroptosis remain poorly understood. In this study, data from the Gene Expression Omnibus and disease target databases (OMIM, GeneCards, DisGeNet, TTD, and DrugBank) were integrated with ferroptosis-related gene datasets. To identify key molecular targets of Chuanxiong Rhizoma (CX), drug ingredient databases, including PubChem and TCMBank, were employed to map CX-related targets (CX-DEGs-FRG and CX-IS-FRG).

View Article and Find Full Text PDF

More than two decades ago, in the central-eastern region of the Mediterranean island of Sardinia, a mountain area was identified where the population displays exceptional longevity, especially among men (the Longevity Blue Zone, LBZ). This community was thoroughly investigated to understand the underlying causes of the phenomenon. The present study analyzed 11 genetic markers previously associated with increased survival in several long-lived populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!