Herbivory leads to changes in the allocation of nitrogen among different pools and tissues; however, a detailed quantitative analysis of these changes has been lacking. Here, we demonstrate that a mass spectrometric data-independent acquisition approach known as LC-MS(E), combined with a novel algorithm to quantify heavy atom enrichment in peptides, is able to quantify elicited changes in protein amounts and (15)N flux in a high throughput manner. The reliable identification/quantitation of rabbit phosphorylase b protein spiked into leaf protein extract was achieved. The linear dynamic range, reproducibility of technical and biological replicates, and differences between measured and expected (15)N-incorporation into the small (SSU) and large (LSU) subunits of ribulose-1,5-bisphosphate-carboxylase/oxygenase (RuBisCO) and RuBisCO activase 2 (RCA2) of Nicotiana attenuata plants grown in hydroponic culture at different known concentrations of (15)N-labeled nitrate were used to further evaluate the procedure. The utility of the method for whole-plant studies in ecologically realistic contexts was demonstrated by using (15)N-pulse protocols on plants growing in soil under unknown (15)N-incorporation levels. Additionally, we quantified the amounts of lipoxygenase 2 (LOX2) protein, an enzyme important in antiherbivore defense responses, demonstrating that the approach allows for in-depth quantitative proteomics and (15)N flux analyses of the metabolic dynamics elicited during plant-herbivore interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr300465nDOI Listing

Publication Analysis

Top Keywords

elicited plant-herbivore
8
plant-herbivore interactions
8
15n flux
8
protein
5
determination ¹⁵n-incorporation
4
¹⁵n-incorporation plant
4
plant proteins
4
proteins absolute
4
absolute quantitation
4
quantitation tool
4

Similar Publications

Heat stress reprograms herbivory-induced defense responses in potato plants.

BMC Plant Biol

July 2024

State Key Laboratory of Rice Biology and Breeding, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.

Article Synopsis
  • Climate change is expected to increase extreme weather events, such as heatwaves, impacting plant-herbivore interactions by affecting both herbivore growth and host plant defenses.
  • This study focuses on how high temperatures influence the defenses of potato plants against the potato tuber moth larvae, revealing that larvae grow heavier on plants exposed to both heat and herbivory.
  • High temperatures disrupt the plant's defense signaling pathways, particularly by suppressing jasmonate compounds essential for responding to herbivore attacks, indicating that climate change may weaken plant defenses against pests.
View Article and Find Full Text PDF

Crop damage by herbivorous insects remains a significant contributor to annual yield reductions. Following attack, maize (Zea mays) responds to herbivore-associated molecular patterns (HAMPs) and damage-associated molecular patterns (DAMPs), activating dynamic direct and indirect antiherbivore defense responses. To define underlying signaling processes, comparative analyses between plant elicitor peptide (Pep) DAMPs and fatty acid-amino acid conjugate (FAC) HAMPs were conducted.

View Article and Find Full Text PDF

Plant elicitor peptides (Peps) are conserved regulators of defense responses and models for the study of damage-associated molecular pattern-induced immunity. Although present as multigene families in most species, the functional relevance of these multigene families remains largely undefined. While Arabidopsis Peps appear largely redundant in function, previous work examining Pep-induced responses in maize (Zm) implied specificity of function.

View Article and Find Full Text PDF

The timing of plant volatile emissions is important for a robust indirect defense response. Green leaf volatiles (GLVs) are emitted by plants upon damage but can be suppressed by herbivore-associated elicitors, and the abundance and composition of GLVs vary depending on the timing of herbivore attack. We show that the GLV biosynthetic enzyme HYDROPEROXIDE LYASE (HPL) is transcriptionally regulated by the circadian clock in Nicotiana attenuata.

View Article and Find Full Text PDF

The jasmonate hormones are essential regulators of plant defense against herbivores and include several dozen derivatives of the oxylipin jasmonic acid (JA). Among these, the conjugate jasmonoyl isoleucine (JA-Ile) has been shown to interact directly with the jasmonate co-receptor complex to regulate responses to jasmonate signaling. However, functional studies indicate that some aspects of jasmonate-mediated defense are not regulated by JA-Ile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!