A two-dimensional (2D) square-grid type porous coordination polymer [Fe(bdpt)(2)]·guest (1·g, Hbdpt = 3-(5-bromo-2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole) with isolated small cavities was designed and constructed as a spin-crossover (SCO) material based on octahedral Fe(II)N(6) units and an all-nitrogen ligand. Three guest-inclusion forms were successfully prepared for 1·g (1·EtOH for g = ethanol, 1·MeOH for g = methanol, 1 for g = Null), in which the guest molecules interact with the framework as hydrogen-bonding donors. Magnetic susceptibility measurements showed that 1·g exhibited two-step SCO behavior with different transition temperatures (1·EtOH < 1·MeOH < 1) and hysteresis widths (1·EtOH > 1·MeOH > 1 ≈ 0). Such guest modulation of two-step spin crossover temperature and hysteresis without changing two-step state in a porous coordination framework is unprecedented. X-ray single-crystal structural analyses revealed that all two-step SCO processes were accompanied with interesting symmetry-breaking phase transitions from space group of P2(1)/n for all high-spin Fe(II), to P1 for ordered half high-spin and half low-spin Fe(II), and back to P2(1)/n for all low-spin Fe(II) again by lowering temperature. The different SCO behaviors of 1·g were elucidated by the steric mechanism and guest-host hydrogen-bonding interactions. The SCO behavior of 1·g can be also controlled by external physical pressure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic301237p | DOI Listing |
Chempluschem
January 2025
Sun Yat-Sen University, School of Chemistry, CHINA.
n-butane (n-C4H10) and isobutane (i-C4H10) are important raw materials in chemical industry. The separation of the two hydrocarbon isomers via distillation is challenging and energy-consuming. Herein we report the adsorption behavior of a microporous cobalt formate framework [Co3(HCOO)6] for potential kinetic separation of butane isomers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Lab of Applied Biocatalysis, National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, Guangdong China.
Biomineralization of enzymes inside rigid metal-organic frameworks (MOFs) is appealing due to its biocompatibility and simplicity. However, this strategy has hitherto been limited to microporous MOFs, leading to low apparent enzymatic activity. In this study, polysaccharide sodium alginate is introduced during the biomineralization of enzymes in zeolitic imidazolate frameworks (ZIFs) to competitively coordinate with metal ions, which endows the encapsulated enzyme with a 7-fold higher activity than that in microporous ZIFs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Université de Caen Normandie, ENSICAEN, CNRS, LCS, 14000 Caen, France.
Germanium is known to occupy tetrahedral sites by substituting silicon in germanosilicate zeolites. In this study, we present pioneering findings regarding the synthesis of zeolites with an MFI structure (GeMFI) incorporating a high germanium amount (16% Ge). Remarkably, the germanium atoms feature a slight electron deficiency with respect to GeO, and the typical coordination number of 4, as usually reported for the germanosilicate zeolites, is exceeded, giving rise to Ge dimers in a double-bridge configuration.
View Article and Find Full Text PDFAnal Chem
January 2025
Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China.
The elementary mechanism and site studies of nanozyme-based inhibition reactions are ambiguous and urgently require advanced nanozymes as mediators to elucidate the inhibition effect. To this end, we develop a class of nanozymes featuring single Cu-N catalytic configurations and B-O sites as binding configurations on a porous nitrogen-doped carbon substrate (B/Cu) for inducing modulable inhibition transfer at the atomic level. The full redistribution of electrons across the Cu-N sites, induced by B-O sites incorporation, yields B/Cu with enhanced peroxidase-like activity versus Cu.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry, KAIST, Daejeon 34141, Korea.
Bicontinuous metal structures possess unique physical and chemical properties, such as efficient mass transport capability and abundant low-coordinated surface atoms, that make them highly desirable catalysts for various important chemical reactions. Here, we report a one-pot synthesis approach to fabricate bicontinuous Pd nanocubes without a sacrificial template or a dealloying process. The prepared bicontinuous Pd nanocubes have a porous structure consisting of continuous nanosized ligaments, which can enable high atom utilization efficiency and offer abundant low-coordinated surface atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!