Background: Captive breeding programs for endangered amphibian species often utilize exogenous hormones for species that are difficult to breed. The purpose of our study was to compare the efficacy of two different hormones at various concentrations on sperm production, quantity and quality over time in order to optimize assisted breeding.
Methods: Male American toads (Anaxyrus americanus) were divided into three separate treatment groups, with animals in each group rotated through different concentrations of luteinizing hormone releasing hormone analog (LHRH; 0.1, 1.0, 4.0 and 32 micrograms/toad), human chorionic gonadotropin (hCG; 50, 100, 200, and 300 IU), or the control over 24 hours. We evaluated the number of males that respond by producing spermic urine, the sperm concentration, percent motility, and quality of forward progression. We also evaluated the effects of hCG and LHRH on reproductive behavior as assessed by amplexus. Data were analyzed using the Generalized Estimating Equations incorporating repeated measures over time and including the main effects of treatment and time, and the treatment by time interaction.
Results: The hormone hCG was significantly more effective at stimulating spermiation in male Anaxyrus americanus than LHRH and showed a dose-dependent response in the number of animals producing sperm. At the most effective hCG dose (300 IU), 100% of the male toads produced sperm, compared to only 35% for the best LHRH dose tested (4.0 micrograms). In addition to having a greater number of responders (P < 0.05), the 300 IU hCG treatment group had a much higher average sperm concentration (P < 0.05) than the treatment group receiving 4.0 micrograms LHRH. In contrast, these two treatments did not result in significant differences in sperm motility or quality of forward progressive motility. However, more males went into amplexus when treated with LHRH vs. hCG (90% vs. 75%) by nine hours post-administration.
Conclusion: There is a clear dichotomy between the two hormones' physiological responses on gamete production and stimulation of amplexus. Understanding how these two hormones influence physiology and reproductive behaviors in amphibians will have direct bearing on establishing similar breeding protocols for endangered species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3495228 | PMC |
http://dx.doi.org/10.1186/1477-7827-10-59 | DOI Listing |
PeerJ
July 2024
Department of Life Sciences, Texas A&M University - Corpus Christi, Corpus Christ, TX, United States of America.
Documenting changes in the distribution and abundance of a given taxon requires historical data. In the absence of long-term monitoring data collected throughout the range of a taxon, conservation biologists often rely on preserved museum specimens to determine the past or present, putative geographic distribution. Distributional data for the Houston Toad () has consistently been confounded by similarities with a sympatric congener, the Dwarf American Toad (), both in monitoring data derived from chorusing surveys, and in historical data via museum specimens.
View Article and Find Full Text PDFSci Rep
February 2024
Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
The Houston toad (Bufo [= Anaxyrus] houstonensis) is an endangered amphibian with a small geographic range. Land-use changes have primarily driven decline in B. houstonensis with population supplementation predominant among efforts to reduce its current extinction risk.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
December 2023
Department of Health Sciences, Faculty of Science, Wilfrid Laurier University, Waterloo, ON, Canada.
The common field lampricide, 3-trifluoromethyl-4-nitrophenol (TFM), is used to treat streams and creeks infested with highly invasive and destructive sea lamprey (Petromyzon marinus) in the tributaries of the Great Lakes. Unfortunately, amphibian deaths have been reported following stream treatments with TFM. Larval amphibians (tadpoles) are more susceptible to TFM toxicity than adult amphibians.
View Article and Find Full Text PDFThe outcomes of species interactions can vary by life stage, year, and surrounding environmental conditions. Amphibian species are expected to compete most strongly during their tadpole stage when they exist in the highest densities. Changes in arrival timing, surrounding aquatic communities, and yearly conditions could all affect the outcome of larval competition.
View Article and Find Full Text PDFEcotoxicol Environ Saf
July 2023
Aquatic Contaminants Research Division, Water Science and Technology Directorate, Science and Technology Branch, St. Lawrence Centre, Environment and Climate Change Canada, 105 McGill, 7th Floor, Montreal, Quebec H2Y 2E7, Canada.
Pesticides and pathogens adversely affect amphibian health, but their interactive effects are not well known. We assessed independent and combined effects of two agricultural herbicides and the fungal pathogen Batrachochytrium dendrobatidis (Bd) on the growth, development and survival of larval American toads (Anaxyrus americanus). Wild-caught tadpoles were exposed to four concentrations of atrazine (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!