Carbon starvation has been shown to induce a massive dispersal event in biofilms of the opportunistic pathogen Pseudomonas aeruginosa; however, the molecular pathways controlling this dispersal response remain unknown. We quantified changes in the proteome of P. aeruginosa PAO1 biofilm and planktonic cells during glucose starvation by differential peptide-fingerprint mass-spectrometry (iTRAQ). In addition, we monitored dispersal photometrically, as a decrease in turbidity/opacity of biofilms pre-grown and starved in continuous flow-cells, in order to evaluate treatments (e.g. inhibitors CCCP, arsenate, chloramphenicol, L-serine hydroxamate) and key mutants altered in biofilm development and dispersal (e.g. nirS, vfr, bdlA, rpoS, lasRrhlR, Pf4-bacteriophage and cyaA). In wild-type biofilms, dispersal started within five minutes of glucose starvation, was maximal after 2 h, and up to 60% of the original biomass had dispersed after 24 h of starvation. The changes in protein synthesis were generally not more than two fold and indicated that more than 100 proteins belonging to various classes, including carbon and energy metabolism, stress adaptation, and motility, were differentially expressed. For the different treatments, only the proton-ionophore CCCP or arsenate, an inhibitor of ATP synthesis, prevented dispersal of the biofilms. For the different mutants tested, only cyaA, the synthase of the intracellular second messenger cAMP, failed to disperse; complementation of the cyaA mutation restored the wild-type phenotype. Hence, the pathway for carbon starvation-induced biofilm dispersal in P. aeruginosa PAO1 involves ATP production via direct ATP synthesis and proton-motive force dependent step(s) and is mediated through cAMP, which is likely to control the activity of proteins involved in remodeling biofilm cells in preparation for planktonic survival.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3419228PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042874PLOS

Publication Analysis

Top Keywords

dispersal
8
pseudomonas aeruginosa
8
aeruginosa pao1
8
glucose starvation
8
cccp arsenate
8
atp synthesis
8
biofilms
5
glucose starvation-induced
4
starvation-induced dispersal
4
dispersal pseudomonas
4

Similar Publications

Accurate quantitative assessments are crucial to understanding development of diseases and their effective treatments. Various validated perimetry and volumetry measurement methods for patients with lymphedema exist and each has its own advantages and limitations and choosing the right instrument is essential. PeriKit® (PK) is a new measurement device that requires validation.

View Article and Find Full Text PDF

This article examines leisure time physical activity (LTPA) for middle-class women as relational, intricately linked with societal understandings of personal responsibility to work, to family and to health and entangled with the emotion management of 'successful' middle-class womanhood. We focus on middle-class Danish women who engage in routinised participation in LTPA. We illuminate through our qualitative study how emotional reflexivity involves dispersed practices that are entangled with this lifelong physical activity and how these entangled, mutually evolving practices enable women to dutifully enact 'successful' womanhood, in line with contemporary ideals.

View Article and Find Full Text PDF

The fate and degradation of organic matter in aquatic systems is a vital link in nutrient cycling and sedimentation processes influenced by exogenous and endogenous factors, such as inputs from upstream sources, sediment suspension, and the decomposition of aquatic organisms. The interplay of organic carbon, microbes, and environmental factors shapes the distribution and degradation of organic matter. Characterizing the source distribution of sedimentary organic matter in aquatic systems using novel proxies can unravel new insights into the mechanisms that control its dispersal, preservation and fate, which is essential to understanding the global carbon and nitrogen cycles.

View Article and Find Full Text PDF

Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.

View Article and Find Full Text PDF

A topology optimization method is presented and applied to a blazed diffraction grating in reflection under conical incidence. This type of grating is meant to disperse the incident light on one particular diffraction order, and this property is fundamental in spectroscopy. Conventionally, a blazed metallic grating is made of a sawtooth profile designed to work with the ±1st diffraction order in reflection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!