2,9-Diiodo-hexa-cyclo-[9.3.1.1(2,6).1(4,8).1(9,13).0(1,8)]octa-deca-ne.

Acta Crystallogr Sect E Struct Rep Online

Chemistry Department, University of Cyprus, Nicosia 1678, Cyprus.

Published: August 2012

The title compound, C(18)H(24)I(2), has an adamantanoid structure with tetra-hedral cages having four C atoms lying on the same plane [(I-)C-C-C-C(-I) torsion angle = 0°]. The plane is extended by the two I atoms, each having a deviation of 1.0 (6) Å [C-C-C-I torsion angle = 178.9 (4)°]. The central C-C bond connecting the two quaternary carbons seems enlarged [1.593 (9) Å] in comparison to the corresponding bond in [2]diadamantane [1.554 (3) Å]. This is attributed to the presence of the electronegative I atoms, which affect inductively the C atoms of the four-C-atom plane, making the central C-C bond weaker.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3414276PMC
http://dx.doi.org/10.1107/S1600536812026797DOI Listing

Publication Analysis

Top Keywords

torsion angle
8
central c-c
8
c-c bond
8
29-diiodo-hexa-cyclo-[9311261481913018]octa-deca-ne title
4
title compound
4
compound c18h24i2
4
c18h24i2 adamantanoid
4
adamantanoid structure
4
structure tetra-hedral
4
tetra-hedral cages
4

Similar Publications

The cation of the title salt, CHNO ·Br, has a dihedral angle of 24.26 (6)° between its fused imidazole and 4-nitro-phenyl rings and the N-C-C-O torsion angle associated with the hy-droxy-ethyl substituent is 60.15 (17)°.

View Article and Find Full Text PDF

The structural plasticity of proteins at the molecular level is largely dictated by backbone torsion angles, which play a critical role in ligand recognition and binding. To establish the anion-induced cooperative arrangement of the main-chain (mc) torsion, herein, we analyzed a set of naturally occurring CαNN motifs as "static models" for their anion-binding competence through docking and molecular dynamics simulations and decoded its torsion angle influenced mc-driven anion recognition potential. By comparing a pool of 20 distinct sets of CαNN motif with identical sequences in their "anion bound/present, aP" and "anion free/absent, aA" versions, we could discern that there exists a positive correlation between the "difference of anion residence time (ΔR)" and "difference among the main-chain torsion angle" of the aP and aA population.

View Article and Find Full Text PDF

Motivation: Predicting the 3D structure of RNA is an ongoing challenge that has yet to be completely addressed despite continuous advancements. RNA 3D structures rely on distances between residues and base interactions but also backbone torsional angles. Knowing the torsional angles for each residue could help reconstruct its global folding, which is what we tackle in this work.

View Article and Find Full Text PDF

The MEMS scanning micromirror requires angle sensors to provide real-time angle feedback during operation, ensuring a stable and accurate deflection of the micromirror. This paper proposes a method for integrating piezoresistive sensors on the torsion axis of electrostatic MEMS micromirrors to detect the deflection angle. The design uses a multi-layer bonding process to realize a vertical comb-driven structure.

View Article and Find Full Text PDF

: Femoral torsional malalignment is a common cause of in-toeing and out-toeing in children, often leading to gait disturbances, functional limitations, and increased risk of falls. Traditionally, osteotomy was the only surgical option for correction. A minimally invasive technique known as rotational guided growth (RGG) has recently been introduced to address these malalignments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!