Chemical senses are crucial for all organisms to detect various environmental information. Different protein families, expressed in chemosensory organs, are involved in the detection of this information, such as odorant-binding proteins, olfactory and gustatory receptors, and ionotropic receptors. We recently reported an Expressed Sequence Tag (EST) approach on male antennae of the noctuid moth, Spodoptera littoralis, with which we could identify a large array of chemosensory genes in a species for which no genomic data are available.Here we describe a complementary EST project on female antennae in the same species. 18,342 ESTs were sequenced and their assembly with our previous male ESTs led to a total of 13,685 unigenes, greatly improving our description of the S. littoralis antennal transcriptome. Gene ontology comparison between male and female data suggested a similar complexity of antennae of both sexes. Focusing on chemosensation, we identified 26 odorant-binding proteins, 36 olfactory and 5 gustatory receptors, expressed in the antennae of S. littoralis. One of the newly identified gustatory receptors appeared as female-enriched. Together with its atypical tissue-distribution, this suggests a role in oviposition. The compilation of male and female antennal ESTs represents a valuable resource for exploring the mechanisms of olfaction in S. littoralis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421235 | PMC |
http://dx.doi.org/10.7150/ijbs.4469 | DOI Listing |
Nanomicro Lett
March 2025
Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea.
Many natural organisms have evolved unique sensory systems over millions of years that have allowed them to detect various changes in their surrounding environments. Sensory systems feature numerous receptors-such as photoreceptors, mechanoreceptors, and chemoreceptors-that detect various types of external stimuli, including light, pressure, vibration, sound, and chemical substances. These stimuli are converted into electrochemical signals, which are transmitted to the brain to produce the sensations of sight, touch, hearing, taste, and smell.
View Article and Find Full Text PDFInsect Sci
March 2025
Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
Silkworm is a typical monophagous insect that can only feed on fresh mulberry leaves. The mechanism for this monophagous nature is not fully understood. One bitter gustatory receptor (GR) GR66 located on the maxilla of the mouthpart has been reported to be an important factor influencing the feeding preference of silkworm.
View Article and Find Full Text PDFFood Chem
February 2025
German Institute of Human Nutrition Potsdam-Rehbruecke, Dept. Molecular Genetics, 14558 Nuthetal, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany.
Succinate is a key component of the characteristic umami-like taste of shellfish, which is similar to the umami taste elicited by glutamate, but is slightly more persistent and astringent. The taste receptors involved in the perception of succinate currently remain unknown. Therefore, we herein attempted to identify the taste receptors for succinate.
View Article and Find Full Text PDFNutrients
February 2025
Department of Experimental and Clinical Medicine, Neurorehabilitation Clinic, Università Politecnica delle Marche, 60126 Ancona, Italy.
Parkinson's disease (PD) is a neurological disorder characterized by heterogeneous symptomatology, in which the classical motor features of Parkinsonism are associated with clinically significant non-motor symptoms. Olfactory alteration, as a manifestation of PD's premotor or prodromal phase, is well known. These impairments can lead to malnutrition, decreased appetite, and depression, thereby worsening patients' quality of life.
View Article and Find Full Text PDFInsects
February 2025
Institute of Pesticides and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China.
Insects sense intraspecific or interspecific information about the chemical substances in the habitat through the sensitive olfactory system to carry out foraging, mating, oviposition, and other activities. The antennae serve as the primary olfactory organs in insects. The olfactory process involves the participation of many proteins, such as odorant-binding proteins (OBPs) and odorant receptors (ORs), but ORs play a central role in olfactory specificity and sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!