This study examined the effects of different-sized nanoparticles on potential cytotoxicity in intestinal epithelia. Three sizes of hematite nanoparticles were used for the study at a 10 ppm concentration: 17, 53, and, 100 nm. Results indicate that, of the hematite nanoparticles tested, 17 nm was more toxic to the epithelial integrity than 53 or 100 nm. In addition, the epithelial integrity was affected by disruption of epithelial structures such as apical microvilli, and by disruption of the cell-cell junctions leading to reduction in transepithelial electrical resistance measurements (TEER). The drop in TEER was caused by disruption of the adhering junctions not by cell death, as determined by immunocytochemistry, and by using a cell viability assay. Epithelial integrity was also affected at the molecular level as shown by differential expression of genes related to cell junction maintenance, which was assessed by microarray analysis. In conclusion, the 17- and 100-nm hematite nanoparticles caused significant structural changes in the epithelium but not the 53 nm nanoparticles. Also, different-sized hematite nanoparticles each had different effects both at the cellular level and genetic level.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10565-012-9229-7DOI Listing

Publication Analysis

Top Keywords

hematite nanoparticles
20
epithelial integrity
12
nanoparticles study
8
nanoparticles
7
epithelial
5
hematite
5
human intestinal
4
intestinal epithelial
4
epithelial cells
4
cells exhibit
4

Similar Publications

Loading monocytes with magnetic nanoparticles enables their magnetic control without toxicity.

Front Bioeng Biotechnol

January 2025

Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.

Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.

View Article and Find Full Text PDF

Chemical weathering processes play a key role in regulating the global climate over geological time scales. Lithium (Li) isotope compositions have proven to be a robust proxy for tracing weathering processes that produce secondary minerals, such as clays and oxides, with a focus often placed on Li adsorption to, or incorporation into, clay minerals. In addition, the interaction between Li and Fe-oxides has long been assumed and discussed based on field observations, but experimental constraints on this process are lacking.

View Article and Find Full Text PDF

Cell membrane biomimetic magnetic fluorescent bifunctional nanoplatform for drug lead discovery.

Anal Chim Acta

February 2025

School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, 110016, PR China. Electronic address:

Backgroud: Biomimetic nanoplatforms based on membrane coating strategies have received increasing attention in the field of medical research. However, it cannot perform biomedical imaging screening, which is essential for real-time identification. As a rich source of new drug discovery, traditional Chinese medicine (TCM) has made important contributions to the treatment of many diseases.

View Article and Find Full Text PDF

Freezing extends the shelf life of foods but often leads to structural damage due to ice crystal formation, negatively impacting quality attributes. Oscillating magnetic field (OMF)-assisted supercooling has emerged as a potential technique to overcome these limitations by inhibiting ice nucleation and maintaining foods in a supercooled state. Despite its potential, the effectiveness and underlying mechanisms of OMF-assisted supercooling remain subjects of debate.

View Article and Find Full Text PDF

The removal of heavy metal ions, such as lead (Pb2+), from aqueous systems is critical due to their high toxicity and bioaccumulation in living organisms. This study presents a straightforward approach for the synthesis and surface modification of iron oxide nanoparticles (IONPs) for the magnetic removal of Pb2+ ions. IONPs were produced via electrosynthesis at varying voltages (10-40 V), with optimal magnetic properties achieved at 40 V resulting in highly crystalline and magnetic IONPs in the gamma-maghemite (γ-Fe2O3) phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!