We reported previously that the robust protection against renal ischemia/reperfusion (I/R) injury in mice by fasting was largely initiated before the induction of renal I/R. In addition, we found that preoperative fasting downregulated the gene expression levels of complexes I, IV, and V of the mitochondrial oxidative phosphorylation (OXPHOS) system, while it did not change those of complexes II and III. Hence, we now investigated the effect of 3 days of fasting on the functioning of renal mitochondria in order to better understand our previous findings. Fasting did not affect mitochondrial density. Surprisingly, fasting significantly increased the protein expression of complex II of the mitochondrial OXPHOS system by 19%. Complex II-driven state 3 respiratory activity was significantly reduced by fasting (46%), which could be partially attributed to the significant decrease in the enzyme activity of complex II (16%). Fasting significantly inhibited Ca(2+) -dependent mitochondrial permeability transition pore opening that is directly linked to protection against renal I/R injury. The inhibition of the mitochondrial permeability transition pore did not involve the expression of the voltage-dependent anion channel by fasting. In conclusion, 3 days of fasting clearly induces the inhibition of complex II-driven mitochondrial respiration state 3 in part by decreasing the amount of functional complex II, and inhibits mitochondrial permeability transition pore opening. This might be a relevant sequence of events that could contribute to the protection of the kidney against I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.24360DOI Listing

Publication Analysis

Top Keywords

protection renal
12
i/r injury
12
mitochondrial permeability
12
permeability transition
12
transition pore
12
fasting
10
preoperative fasting
8
renal ischemia/reperfusion
8
renal i/r
8
oxphos system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!