AI Article Synopsis

  • After a heart attack, monocytes turn into macrophages, which change from pro-inflammatory (M1) to anti-inflammatory (M2) types during tissue repair.
  • Research shows that M2 macrophages help human mesenchymal stem cells (MSCs) grow, while M1 macrophages hinder their growth due to the presence of certain cytokines.
  • The findings suggest that creating a more anti-inflammatory environment (M2) is better for MSC therapy compared to a pro-inflammatory environment (M1).

Article Abstract

Following myocardial infarction, tissue repair is mediated by the recruitment of monocytes and their subsequent differentiation into macrophages. Recent findings have revealed the dynamic changes in the presence of polarized macrophages with pro-inflammatory (M1) and anti-inflammatory (M2) properties during the early (acute) and late (chronic) stages of cardiac ischemia. Mesenchymal stem cells (MSCs) delivered into the injured myocardium as reparative cells are subjected to the effects of polarized macrophages and the inflammatory milieu. The present study investigated how cytokines and polarized macrophages associated with pro-inflammatory (M1) and anti-inflammatory (M2) responses affect the survival of MSCs. Human MSCs were studied using an in vitro platform with individual and combined M1 and M2 cytokines: IL-1β, IL-6, TNF-α, and IFN-γ (for M1), and IL-10, TGF-β1, TGF-β3, and VEGF (for M2). In addition, polarization molecules (M1: LPS and IFN-γ; M2: IL-4 and IL-13) and common chemokines (SDF-1 and MCP-1) found during inflammation were also studied. Indirect and direct co-cultures were conducted using M1 and M2 polarized human THP-1 monocytes. M2 macrophages and their associated cytokines supported the growth of hMSCs, while M1 macrophages and their associated cytokines inhibited the growth of hMSCs in vitro under certain conditions. These data imply that an anti-inflammatory (M2) environment is more accommodating to the therapeutic hMSCs than a pro-inflammatory (M1) environment at specific concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.24357DOI Listing

Publication Analysis

Top Keywords

polarized macrophages
12
macrophages associated
12
mesenchymal stem
8
stem cells
8
pro-inflammatory anti-inflammatory
8
associated cytokines
8
growth hmscs
8
macrophages
7
macrophages modulate
4
modulate viability
4

Similar Publications

Background: The mechanism underlying chronic drug-induced liver injury (DILI) remains unclear. Immune activation is a common feature of DILI progression and is closely associated with metabolism. We explored the immunometabolic profile of chronic DILI and the potential mechanism of chronic DILI progression.

View Article and Find Full Text PDF

Natural plant-derived polysaccharides exhibit substantial potential for treating ulcerative colitis (UC) owing to their anti-inflammatory and antioxidant properties and favorable safety profiles. However, their practical application faces several challenges, including structural instability in gastric acid, imprecise targeting of inflamed regions, and limited intestinal retention times. To address these limitations, pH-responsive, colon-targeting microspheres (pWGPAC MSs) are developed for delivering phosphorylated wild ginseng polysaccharides (pWGP) to alleviate UC.

View Article and Find Full Text PDF

Goose Deoxycholic Acid Ameliorates Liver Injury in Laying Hens with Fatty Liver Hemorrhage Syndrome by Inhibiting the Inflammatory Response.

Int J Mol Sci

January 2025

Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.

Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional and metabolic disease involving liver enlargement, hepatic steatosis, and hepatic hemorrhage as the primary symptoms. The syndrome is prone to occur during the peak laying period of laying hens, which has resulted in significant economic losses in the laying hen breeding industry; however, the specific pathogenesis of FLHS remains unclear. Our group and previous studies have shown that bile acid levels are significantly decreased during the development of fatty liver and that targeted activation of bile acid-related signaling pathways is beneficial for preventing and treating fatty liver.

View Article and Find Full Text PDF

A Low-Modulus Phosphatidylserine-Exposing Microvesicle Alleviates Skin Inflammation via Persistent Blockade of M1 Macrophage Polarization.

Int J Mol Sci

January 2025

Department of Material Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.

Inflammatory skin diseases comprise a group of skin conditions characterized by damage to skin function due to overactive immune responses. These disorders not only impair the barrier function of the skin but also deteriorate the quality of life and increase the risk of psychiatric issues. Here, a low-modulus phosphatidylserine-exposing microvesicle (deformed PSV, D-PSV) was produced, characterized, and evaluated for its potential therapeutic function against skin diseases.

View Article and Find Full Text PDF

Macrophage Polarization: Learning to Manage It 3.0.

Int J Mol Sci

January 2025

Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, 90146 Palermo, Italy.

Macrophages are cells of the innate immune system with very peculiar characteristics, so plastic that they respond rapidly to environmental changes by assuming different and sometimes contrasting functions, such as initiating a physiological inflammatory response or interrupting it and repairing damaged tissues [...

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!