We analyze the mathematical properties of the fibrous capsule tissue concentration around a disk-shaped implant. We establish stability estimates as well as monotonicity results that illustrate the sensitivity of this growth to the biocompatibility index parameters of the implant. In addition, we prove that the growth of the tissue increases exponentially in time toward an asymptotic regime. We also study the mathematical properties of the solution of the inverse problem consisting in the determination of the values of the biocompatibility index parameters from the knowledge of some fibrous capsule tissue measurements. We prove that this model calibration problem admits a unique solution, and establish a characterization of the index parameters. Furthermore, we demonstrate analytically that such a solution is not continuous with respect to the data, and therefore the considered inverse problem is ill-posed due to the lack of the stability requirement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00285-012-0566-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!