Purpose: The purpose of this study was to compare neuromuscular adaptations induced by work-matched isoload (IL) versus isokinetic (IK) eccentric resistance training.
Methods: A total of 31 healthy subjects completed a 9-wk IL (n = 11) or IK (n = 10) training program for the knee extensors or did not train (control group; n = 10). The IL and IK programs consisted of 20 training sessions, which entailed three to five sets of eight repetitions in the respective modalities. The amount of work and the mean angular velocity were strictly matched between IL and IK conditions. Neuromuscular tests were performed before and after training and consisted of the assessment of quadriceps muscle strength, muscle architecture (vastus lateralis), EMG activity, and antagonist coactivation.
Results: IL, but not IK, eccentric resistance training enhanced eccentric strength at short muscle length (+20%), high-velocity eccentric strength (+15%), muscle thickness (+10%), and fascicle angle measured at rest (+11%; P < 0.05). Agonist EMG activity increased almost similarly for the two modalities, whereas antagonist coactivation was unaffected by training.
Conclusions: IL proved to be more effective than IK training for improving quadriceps muscle strength and structure. It is conjectured that the rapid acceleration of the load in the early phase of IL eccentric movements (i.e., at short muscle lengths), which results in greater torque and angular velocities compared with IK actions, is the main determinant of strength and neuromuscular adaptations to eccentric training. These findings have important consequences for the optimization of IL and IK eccentric exercise for resistance training and rehabilitation purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1249/MSS.0b013e31826e7066 | DOI Listing |
J Neuroeng Rehabil
January 2025
Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
Background: Motion complexity is necessary for adapting to external changes, but little is known about trunk motion complexity during seated perturbation in individuals with spinal cord injury (SCI). We aimed to investigate changes following SCI in trunk segmental motion complexity across different perturbation directions and how they affect postural control ability in individuals with SCI.
Methods: A total of 17 individuals with SCI and 18 healthy controls participated in challenging sagittal-seated perturbations with hand protection.
Medicina (Kaunas)
November 2024
Department of Sports Medicine, Medical University of Lublin, 20-093 Lublin, Poland.
: Sport climbing's popularity has grown with its inclusion in the Olympics and increased accessibility. Understanding the relationship between hand dominance, grip strength, endurance, and the involvement of masticatory and neck muscles can provide valuable insights into the neuromuscular adaptations specific to sport climbing, potentially aiding performance optimization and injury prevention in intermediate and advanced climbers. This study analyzes if the dominant hand has greater isometric endurance and isometric manual grip strength parameters than the non-dominant one and examines its relation to the masticatory and neck muscles in intermediate and advanced sport climbers.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
Ankle sprains are a common injury among athletes and the general population, with chronic ankle instability (CAI) being a frequent complication. CAI patients often display altered neuromuscular control adaptations. This study analyzed muscle synergy patterns in 20 CAI patients during anticipated and unanticipated landing tasks to understand their neuromuscular adaptation strategies.
View Article and Find Full Text PDFExp Physiol
January 2025
Strength and Conditioning Research Laboratory, College of Physical Education, University of Brasília, Brasília, Brazil.
This study examined the acute effects of dynamic stretching at different velocities on the neuromuscular system. Fourteen participants underwent four experimental sessions in random order: (1) control (lying at rest with the ankle in a neutral position); (2) slow velocity dynamic stretching (50 beats/min; SLOW); (3) moderate velocity dynamic stretching (70 beats/min; MOD); and (4) fast velocity dynamic stretching (90 beats/min; FAST). The stretching protocols consisted of four sets of 10 repetitions and targeted the plantar flexor muscles of the right ankle.
View Article and Find Full Text PDFJ Physiol
January 2025
Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.
Short-term disuse leads to rapid declines in muscle mass and strength. These declines are driven by changes at all levels of the neuromuscular system; the brain, spinal cord and skeletal muscle. In addition to neural input from the central and peripheral nervous systems to the muscle, molecular factors originating in the muscle can be transported to the central nervous system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!