Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy.

Nat Nanotechnol

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterial Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

Published: September 2012

Heterogeneous catalysts play a pivotal role in the chemical industry, but acquiring molecular insights into functioning catalysts remains a significant challenge. Recent advances in micro-spectroscopic approaches have allowed spatiotemporal information to be obtained on the dynamics of single active sites and the diffusion of single molecules. However, these methods lack nanometre-scale spatial resolution and/or require the use of fluorescent labels. Here, we show that time-resolved tip-enhanced Raman spectroscopy can monitor photocatalytic reactions at the nanoscale. We use a silver-coated atomic force microscope tip to both enhance the Raman signal and to act as the catalyst. The tip is placed in contact with a self-assembled monolayer of p-nitrothiophenol molecules adsorbed on gold nanoplates. A photocatalytic reduction process is induced at the apex of the tip with green laser light, while red laser light is used to monitor the transformation process during the reaction. This dual-wavelength approach can also be used to observe other molecular effects such as monolayer diffusion.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nnano.2012.131DOI Listing

Publication Analysis

Top Keywords

tip-enhanced raman
8
raman spectroscopy
8
laser light
8
catalytic processes
4
processes monitored
4
monitored nanoscale
4
nanoscale tip-enhanced
4
spectroscopy heterogeneous
4
heterogeneous catalysts
4
catalysts play
4

Similar Publications

Phonon modal nonequilibrium is believed to widely exist around nanoscale hotspots, which can significantly affect the performance of nano-electronic and optoelectronic devices. However, such a phenomenon has not been explicitly observed in 3D device semiconductors at the nanoscale. Here, by employing a tip-enhanced Raman thermal measurement approach, substantial phonon nonequilibrium in gallium nitride near sub-10 nm laser-excited hotspots is directly revealed for the first time.

View Article and Find Full Text PDF

Hydrogen evolution reaction (HER), as one of the most advanced methods for the green production of hydrogen, is greatly impeded by inefficient mass transfer. Here we present an efficiently reactant enriched and mass traffic system by integrating high-curvature Pt nanocones with 3D porous TiAl framework to enhance mass transfer rate. Theoretical simulations, in situ Raman spectroscopy and potential-dependent Fourier transform infrared spectroscopy results disclose that the strong local electric field induced by high-curvature Pt can greatly promote the HO supply rate during HER, resulting in ∼1.

View Article and Find Full Text PDF

SERS-Based Local Field Enhancement in Biosensing Applications.

Molecules

December 2024

State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.

Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the development of material science and the expansion of application fields, SERS substrate materials have also undergone significant changes: from precious metals to semiconductors, from single crystals to composite particles, from rigid to flexible substrates, and from two-dimensional to three-dimensional structures.

View Article and Find Full Text PDF

Fiber Vector Light-Field-Based Tip-Enhanced Raman Spectroscopy.

Nano Lett

January 2025

Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.

Tip-enhanced Raman spectroscopy (TERS) has been extensively employed to investigate the light-matter interaction at the nanoscale. However, the current TERS strategies lack the ability to excite the low-background inhomogeneous electromagnetic field with significant enhancement of electric field, electric field gradient, and optomagnetic field, simultaneously. To overcome this, we developed a fiber vector light-field-based TERS strategy aimed at exploring the multipole Raman scattering processes of molecules.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy: a half-century historical perspective.

Chem Soc Rev

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.

Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!