Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Patients with acute myocardial infarction (AMI) frequently have abnormalities of glucose metabolism and insulin resistance, both of which are associated with a poor outcome. Glucagon-like peptide 1 (GLP-1) is a naturally occurring incretin with both insulinotropic and insulinomimetic properties which not only controls glucose levels but also has potential beneficial actions on the ischaemic and failing heart. In this review we highlight the underlying pathophysiological mechanisms for the development of hyperglycaemia in AMI, speculate on the potential relationship between GLP-1 and sphingosine-1-phosphate, and review the literature on the role of GLP-1 as an important approach to treating hyperglycaemia in the setting of AMI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1753944712457598 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!