Background: We previously demonstrated that donor treatment with inhaled hydrogen protects lung grafts from cold ischemia/reperfusion (I/R) injury during lung transplantation. To elucidate the mechanisms underlying hydrogen's protective effects, we conducted a gene array analysis to identify changes in gene expression associated with hydrogen treatment.
Methods: Donor rats were exposed to mechanical ventilation with 98% oxygen and 2% nitrogen or 2% hydrogen for 3 h before harvest; lung grafts were stored for 4h in cold Perfadex. Affymetrix gene array analysis of mRNA transcripts was performed on the lung tissue prior to implantation.
Results: Pretreatment of donor lungs with hydrogen altered the expression of 229 genes represented on the array (182 upregulated; 47 downregulated). Hydrogen treatment induced several lung surfactant-related genes, ATP synthase genes and stress-response genes. The intracellular surfactant pool, tissue adenosine triphosphate (ATP) levels and heat shock protein 70 (HSP70) expression increased in the hydrogen-treated grafts. Hydrogen treatment also induced the transcription factors C/EBPα and C/EBPβ, which are known regulators of surfactant-related genes.
Conclusion: Donor ventilation with hydrogen significantly increases expression of surfactant-related molecules, ATP synthases and stress-response molecules in lung grafts. The induction of these molecules may underlie hydrogen's protective effects against I/R injury during transplantation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007057 | PMC |
http://dx.doi.org/10.1016/j.bbrc.2012.08.005 | DOI Listing |
BJU Int
January 2025
Department of Obstetrics and Gynecology, Herlev and Gentofte University Hospital, Herlev, Denmark.
Objectives: To evaluate the effect of intravesical alkalinised lidocaine as an anaesthetic treatment on procedural pain during intradetrusor onabotulinumtoxinA (BTX-A) injections for overactive bladder.
Patients And Methods: This single-centre, randomised, double-blind, placebo-controlled two period crossover trial was conducted on women scheduled for BTX-A injections at our outpatient urogynaecology clinic between September 2022 and May 2024. Patients were randomly assigned (1:1) to receive either alkalinised lidocaine or placebo during the first treatment period.
J Sci Food Agric
January 2025
College of Food Science and Technology, Bohai University, Jinzhou, China.
Background: Soy protein isolate (SPI) has poor emulsifying ability because of its low molecular flexibility and compact structure, limiting its application in extruded protein-based foods. Extrusion technology has emerged as a promising way to alter the structural properties of proteins. Therefore, the impacts of grape seed proanthocyanidin (GSP) on structural and emulsifying characteristics of SPI in extrusion field were explored in this study.
View Article and Find Full Text PDFSmall
January 2025
Department of Thyroid Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710000, China.
Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, P. R. China.
Metastasis, the leading cause of mortality in cancer patients, presents challenges for conventional photodynamic therapy (PDT) due to its reliance on localized light and oxygen application to tumors. To overcome these limitations, a self-sustained organelle-mimicking nanoreactor is developed here with programmable DNA switches that enables bio-chem-photocatalytic cascade-driven starvation-photodynamic synergistic therapy against tumor metastasis. Emulating the compartmentalization and positional assembly strategies found in living cells, this nano-organelle reactor allows quantitative co-compartmentalization of multiple functional modules for the designed self-illuminating chemiexcited PDT system.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China.
X-ray induced photodynamic therapy (X-PDT) leverages penetrating X-ray to generate singlet oxygen (O) for treating deep-seated tumors. However, conventional X-PDT typically relies on heavy metal inorganic scintillators and organic photosensitizers to produce O, which presents challenges related to toxicity and energy conversion efficiency. In this study, highly biocompatible organic phosphorescent nanoscintillators based on hydrogen-bonded organic frameworks (HOF) are designed and engineered, termed BPT-HOF@PEG, to enhance X-PDT in hepatocellular carcinoma (HCC) treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!