Size-controlled insulin-secreting cell clusters.

Acta Biomater

Joint Graduate Group in Bioengineering, University of California at San Francisco, San Francisco, CA 94158, USA.

Published: December 2012

The search for an effective cure for type I diabetes from the transplantation of encapsulated pancreatic β-cell clusters has so far produced sub-optimal clinical outcomes. Previous efforts have not controlled the size of transplanted clusters, a parameter implicated in affecting long-term viability and the secretion of therapeutically sufficient insulin. Here we demonstrate a method based on covalent attachment of patterned laminin for fabricating uniformly size-controlled insulin-secreting cell clusters. We show that cluster size within the range 40-120μm in diameter affects a variety of therapeutically relevant cellular responses including insulin expression, content and secretion. Our studies elucidate two size-dependent phenomena: (1) as the cluster size increases from 40μm to 60μm, glucose stimulation results in a greater amount of insulin produced per cell; and (2) as the cluster size increases beyond 60μm, sustained glucose stimulation results in a greater amount of insulin secreted per cell. Our study describes a method for producing uniformly sized insulin-secreting cell clusters, and since larger cluster sizes risk nutrient availability limitations, our data suggest that 100-120μm clusters may provide optimal viability and efficacy for encapsulated β-cell transplants as a treatment for type I diabetes and that further in vivo evaluation is warranted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4030672PMC
http://dx.doi.org/10.1016/j.actbio.2012.08.010DOI Listing

Publication Analysis

Top Keywords

insulin-secreting cell
12
cell clusters
12
cluster size
12
size-controlled insulin-secreting
8
type diabetes
8
size increases
8
glucose stimulation
8
stimulation greater
8
greater amount
8
amount insulin
8

Similar Publications

Pancreatic β-cell damage is a critical pathological mechanism in the progression of obese type 2 diabetes mellitus (T2DM). However, the exact underlying mechanism remains unclear. We established an obese T2DM mouse model via high-fat diet feeding.

View Article and Find Full Text PDF

Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines.

In Vitro Model

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, F-59000 Lille, France.

Background: Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells.

View Article and Find Full Text PDF

Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment.

View Article and Find Full Text PDF

Matching model with mechanism: Appropriate rodent models for studying various aspects of diabetes pathophysiology.

Methods Cell Biol

January 2025

School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom. Electronic address:

Many rodent models are available for preclinical diabetes research making it a challenge for researchers to choose the most appropriate one for their experimental question. To aid in this, models have classically been categorized according to which type of diabetes they represent, and further into whether the model is induced, spontaneous or the result of genetic manipulation. This fails to capture the complexity of pathogenesis seen in diabetes in humans.

View Article and Find Full Text PDF

Decoding the Contribution of IAPP Amyloid Aggregation to Beta Cell Dysfunction: A Systematic Review and Epistemic Meta-Analysis of Type 1 Diabetes.

Int J Mol Sci

January 2025

Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.

Diabetes Mellitus Type 1 (DM1) is an autoimmune disease characterized by the destruction of beta cells in the pancreas. Although amyloid formation has been well-studied in Diabetes Mellitus Type 2 (DM2), its role in DM1 remains unclear. Understanding how islet amyloid polypeptide (IAPP) contributes to beta cell dysfunction and death in DM1 could provide critical insights into disease mechanisms and pave the way for novel diagnostic and therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!