Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ethnopharmacological Relevance: Indigofera tinctoria Linn. (I. tinctoria, Fabaceae) has been widely used for several years in the traditional Indian and Chinese system of Medicine for the treatment of epilepsy, nervous and brain disorders.
Aim Of The Study: The effect of SF-6, a compound isolated from I. tinctoria to exhibit neuroprotection in in vitro and in vivo models of Parkinson's disease (PD), was investigated.
Materials And Methods: Using human neuroblastoma SH-SY5Y cells, the effect of SF-6 on α-synuclein- or 6-hydroxydopamine (6-OHDA)-, hydrogen peroxide (H(2)O(2))-induced cytotoxicity in vitro was investigated. In in vivo studies SF-6 was challenged against 6-OHDA-induced neuronal damage and behavioral deficits in mice.
Results: SF-6 (1, 5 and 10 μg/mL) significantly inhibited α-synuclein- or 6-OHDA-, H(2)O(2)-induced cytotoxicity and decreased the reactive oxygen species production in SH-SY5Y cells. SF-6 also scavenged hydroxyl free radicals. In in vivo evaluation, SF-6 attenuated the contralateral rotational asymmetry observed by apomorphine challenge in 6-OHDA-lesioned mice. Further, the behavioral deficits evaluated by rotarod test, Y-maze and passive avoidance tasks were reversed by SF-6 and was found more potent compared with standard compound deprenyl.
Conclusion: Data suggest that SF-6 showed neuroprotection in experimental models of PD due to its potent antioxidant action supporting the traditional claim for its use in nervous and brain disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2012.07.032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!