Aim: The laboratory diagnosis of pulmonary tuberculosis (TB) and tuberculous meningitis (TBM) is particularly challenging. The aim of the present work is to develop an immunoassay for the diagnosis of TB infection, using synthetic peptides of antigen (Ag) 85 complex of M. tuberculosis (Mtb) H37Rv.

Methods: Four peptides (7-10 amino acids long) corresponding to group-specific epitopes of Ag 85 complex of Mtb were synthesized. All peptides were evaluated by enzyme-linked immunosorbent assay (ELISA) for immunoreactivity with sera and CSF samples of TB and TBM patients respectively. The diagnostic value of the four peptides was evaluated in both the samples.

Results: It was observed that Ag 85 peptide 1, 3 and 4 had the highest positive rates in the pulmonary patients; however, Ag 85 peptide 1 and 2 had shown good positivity in the TBM subjects.

Conclusions: The synthetic peptide based ELISA using Ag 85 complex peptides is a sensitive, specific, rapid and cost effective immunoassay for early diagnosis of pulmonary and extrapulmonary TB. In addition, these synthetic peptides are comparatively easy to produce in a reproducible manner compared with the whole antigen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clineuro.2012.07.031DOI Listing

Publication Analysis

Top Keywords

synthetic peptides
12
antigen complex
8
diagnosis pulmonary
8
peptides evaluated
8
peptides
7
diagnosis
4
diagnosis tuberculosis
4
tuberculosis infection
4
infection based
4
synthetic
4

Similar Publications

A 7 wk old female spayed domestic shorthair was evaluated for 3 days of lethargy and anorexia 1 wk after ovariohysterectomy. On presentation, she was weak, dehydrated, and hypotensive. Blood work showed azotemia, hyponatremia, hyperkalemia, hyperphosphatemia, and hyperproteinemia.

View Article and Find Full Text PDF

The functions of peptides often emerge upon their self-assembly or binding with other co-factors. However, the synthetic complexity makes these functional peptides intractable. Here, we utilize the ester-amide exchange reaction in deep eutectic solvents to generate peptide libraries from unactivated amino acids.

View Article and Find Full Text PDF

ADP-ribosylation is a complex post-translational modification involved in key physiological processes and associated with various health and disease states. The growing interest in ADP-ribosylation necessitates straightforward and efficient synthetic methods for the preparation of ADP-ribosylated peptides/proteins. In this study, we report a facile reaction between nicotinamide adenine dinucleotide (NAD+) and alcohols promoted by a combination of ionic liquids, yielding up to 94% with α:β ratios ranging from 88:12 to 99:1 and a switchable configuration selectivity.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are small, positively charged biomolecules produced by various organisms such as animals, microbes, and plants. These AMPs play a significant role in defense mechanisms and protect from adverse conditions. The emerging problem of drug resistance in microbes poses a global health challenge in treating diseases.

View Article and Find Full Text PDF

Recent progress in biopolymer-based electrospun nanofibers and their potential biomedical applications: A review.

Int J Biol Macromol

January 2025

School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea. Electronic address:

Tissue engineering offers an alternative approach to developing biological substitutes that restore, maintain, or enhance tissue functionality by integrating principles from medicine, biology, and engineering. In this context, biopolymer-based electrospun nanofibers have emerged as attractive platforms due to their superior physicochemical properties, including excellent biocompatibility, non-toxicity, and desirable biodegradability, compared to synthetic polymers. Considerable efforts have been dedicated to developing suitable substitutes for various biomedical applications, with electrospinning receiving considerable attention as a versatile technique for fabricating nanofibrous platforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!