Primary Objective: The purpose of the experiment was to assess the effect of binasal occlusion (BNO) on the visually-evoked potential (VEP) in visually-normal (VN) individuals and in those with mild traumatic brain injury (mTBI) for whom BNO frequently reduces their primary symptoms related to abnormally-increased visual motion sensitivity (VMS).
Design And Methods: Subjects were comprised of asymptomatic VN adults (n = 10) and individuals with mTBI (n = 10) having the symptom of VMS. Conventional full-field VEP testing was employed under two conditions: without BNO and with opaque BNO which blocked regions on either side of the VEP test stimulus. Subjective impressions were also assessed.
Results: In VN, the mean VEP amplitude decreased significantly with BNO in all subjects. In contrast, in mTBI, the mean VEP amplitude increased significantly with BNO in all subjects. Latency was normal and unaffected in all cases. Repeat VEP testing in three subjects from each group revealed similar test-re-test findings. Visuomotor activities improved, with reduced symptoms, with BNO in the mTBI group.
Conclusions: It is speculated that individuals with mTBI habitually attempt to suppress visual information in the near retinal periphery to reduce their abnormal VMS, with addition of the BNO negating the suppressive influence and thus producing a widespread disinhibition effect and resultant increase in VEP amplitude.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/02699052.2012.700088 | DOI Listing |
BMC Neurosci
January 2025
Department of Psychology, King Saud University, Riyadh, Saudi Arabia.
The current study investigated whether the age of healthy adults could predict the peak gamma frequency and the peak amplitudes of VEP components (N1, P2). 49 healthy participants (aged between 19 and 52 years) underwent EEG recordings during a visual task eliciting clear gamma frequency oscillations and VEP activities. After eliminating noisy and outlier data, data from 41 participants were analysed using simple linear regression.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
High altitude (HA) exposure induces impairments in visual function. This study was designed to dynamically observe visual function after returning to lowland and elucidate the underlying mechanism by examining the structure and function of retina and visual pathway. Twenty-three subjects were recruited before (Test 1), and one week (Test 2) and three months (Test 3) after their return from HA (4300 m) where they resided for 30 days.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6 Canada.
The loss of a sensory modality triggers a phenomenon known as cross-modal plasticity, where areas of the brain responsible for the lost sensory modality are reorganized and repurposed to the benefit of the remaining modalities. After perinatal or congenital deafness, superior visual motion detection abilities have been psychophysically identified in both humans and cats, and this advantage has been causally demonstrated to be mediated by reorganized auditory cortex. In our study, we investigated visually evoked potentials (VEPs) in response to motion-onset stimuli of varying speeds in both hearing and perinatally deafened cats under light anesthesia.
View Article and Find Full Text PDFFront Syst Neurosci
December 2024
Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.
Evoked potentials can be used as an intraoperative monitoring measure in neurological surgery. Auditory evoked potentials (AEPs), or specifically brainstem auditory evoked responses (BAERs), are known for being minimally affected by anesthetics, while visually evoked potentials (VEPs) are presumed to be unreliable and easily affected by anesthetics. While many anesthesia trials or intraoperative recordings have provided evidence in support of these hypotheses, the comparisons were always made between AEPs and VEPs recorded sequentially, rather than recorded at the same time.
View Article and Find Full Text PDFTransl Vis Sci Technol
December 2024
Eye Center, Medical Center, University of Freiburg, Freiburg, Germany.
Purpose: Traditional visual acuity (VA) measurements depend on subjective responses, which can be unreliable, especially with uncooperative participants. Objective measurements with visual evoked potentials (VEP) address this issue but can overestimate VA in amblyopia. This study aims to establish the P300 component of the event-related potential as an objective VA test for amblyopia and compare its performance to subjective (psychophysical) and VEP-based VA estimates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!